These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38675316)

  • 41. Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing.
    Zhang R; Su R; Shen C; Xiao R; Cheng W; Miao X
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Competing memristors for brain-inspired computing.
    Kim SJ; Kim SB; Jang HW
    iScience; 2021 Jan; 24(1):101889. PubMed ID: 33458606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Geometrically Scalable Iontronic Memristors: Employing Bipolar Polyelectrolyte Gels for Neuromorphic Systems.
    Zhang Z; Sabbagh B; Chen Y; Yossifon G
    ACS Nano; 2024 Jun; 18(23):15025-15034. PubMed ID: 38804641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Memristor-based programmable logic array (PLA) and analysis as Memristive networks.
    Lee KH; Lee SJ; Kim SM; Cho K
    J Nanosci Nanotechnol; 2013 May; 13(5):3265-9. PubMed ID: 23858841
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative Analysis of Reconfigurable Platforms for Memristor Emulation.
    Mayacela M; Rentería L; Contreras L; Medina S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of Polymers to Electronic Memory Devices and Applications.
    Lee S; Kim S; Yoo H
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications.
    Liu X; Sun C; Ye X; Zhu X; Hu C; Tan H; He S; Shao M; Li RW
    Adv Mater; 2024 Feb; ():e2311472. PubMed ID: 38421081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing.
    Tang B; Veluri H; Li Y; Yu ZG; Waqar M; Leong JF; Sivan M; Zamburg E; Zhang YW; Wang J; Thean AV
    Nat Commun; 2022 Jun; 13(1):3037. PubMed ID: 35650181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust Memristor Networks for Neuromorphic Computation Applications.
    Hajtó D; Rák Á; Cserey G
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683537
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Memristor standard cellular neural networks computing in the flux-charge domain.
    Di Marco M; Forti M; Pancioni L
    Neural Netw; 2017 Sep; 93():152-164. PubMed ID: 28599148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Perovskite Memristor with Large Dynamic Space for Analog-Encoded Image Recognition.
    Yang J; Zhang F; Xiao HM; Wang ZP; Xie P; Feng Z; Wang J; Mao J; Zhou Y; Han ST
    ACS Nano; 2022 Dec; 16(12):21324-21333. PubMed ID: 36519795
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superlow Power Consumption Memristor Based on Borphyrin-Deoxyribonucleic Acid Composite Films as Artificial Synapse for Neuromorphic Computing.
    Wang Z; Zhu W; Li J; Shao Y; Li X; Shi H; Zhao J; Zhou Z; Wang Y; Yan X
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49390-49401. PubMed ID: 37815786
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Retention Secured Nonlinear and Self-Rectifying Analog Charge Trap Memristor for Energy-Efficient Neuromorphic Hardware.
    Kim G; Son S; Song H; Jeon JB; Lee J; Cheong WH; Choi S; Kim KM
    Adv Sci (Weinh); 2023 Jan; 10(3):e2205654. PubMed ID: 36437042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing.
    Wang Z; Yin M; Zhang T; Cai Y; Wang Y; Yang Y; Huang R
    Nanoscale; 2016 Aug; 8(29):14015-22. PubMed ID: 27143476
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robust DNA-Bridged Memristor for Textile Chips.
    Xu X; Zhou X; Wang T; Shi X; Liu Y; Zuo Y; Xu L; Wang M; Hu X; Yang X; Chen J; Yang X; Chen L; Chen P; Peng H
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12762-12768. PubMed ID: 32342610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks.
    Zhang Y; Huang Z; Jiang J
    Sci Technol Adv Mater; 2023; 24(1):2186689. PubMed ID: 37007672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Memristor-Based Neuromorphic Chips.
    Duan X; Cao Z; Gao K; Yan W; Sun S; Zhou G; Wu Z; Ren F; Sun B
    Adv Mater; 2024 Apr; 36(14):e2310704. PubMed ID: 38168750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. LiNbO
    Zhao Y; Duan W; Wang C; Xiao S; Li Y; Li Y; An J; Li H
    Front Neurosci; 2023; 17():1177118. PubMed ID: 37113143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hardware implementation of memristor-based artificial neural networks.
    Aguirre F; Sebastian A; Le Gallo M; Song W; Wang T; Yang JJ; Lu W; Chang MF; Ielmini D; Yang Y; Mehonic A; Kenyon A; Villena MA; Roldán JB; Wu Y; Hsu HH; Raghavan N; Suñé J; Miranda E; Eltawil A; Setti G; Smagulova K; Salama KN; Krestinskaya O; Yan X; Ang KW; Jain S; Li S; Alharbi O; Pazos S; Lanza M
    Nat Commun; 2024 Mar; 15(1):1974. PubMed ID: 38438350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.