BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38675575)

  • 1. Supercritical CO
    Cvitković D; Škarica I; Dragović-Uzelac V; Balbino S
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical composition of volatiles in Sardinian myrtle (Myrtus communis L.) alcoholic extracts and essential oils.
    Tuberoso CI; Barra A; Angioni A; Sarritzu E; Pirisi FM
    J Agric Food Chem; 2006 Feb; 54(4):1420-6. PubMed ID: 16478269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative Ultrasound-Assisted Method for the Extraction of the Bioactive Compounds Present in Myrtle (
    V González de Peredo A; Vázquez-Espinosa M; Espada-Bellido E; Ferreiro-González M; Amores-Arrocha A; Palma M; F Barbero G; Jiménez-Cantizano A
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30832328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Two-Year Bio-Agronomic and Chemotaxonomic Evaluation of Wild Sicilian Myrtle (Myrtus communis L.) Berries and Leaves.
    Siracusa L; Napoli E; Tuttolomondo T; Licata M; La Bella S; Gennaro MC; Leto C; Sarno M; Sperlinga E; Ruberto G
    Chem Biodivers; 2019 Mar; 16(3):e1800575. PubMed ID: 30561831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland.
    Wajs-Bonikowska A; Stobiecka A; Bonikowski R; Krajewska A; Sikora M; Kula J
    J Sci Food Agric; 2017 Aug; 97(11):3576-3583. PubMed ID: 28098355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review.
    Uddin MS; Sarker MZ; Ferdosh S; Akanda MJ; Easmin MS; Bt Shamsudin SH; Bin Yunus K
    J Sci Food Agric; 2015 May; 95(7):1385-94. PubMed ID: 25048690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Composition of Myrtle (
    Usai M; Marchetti M; Culeddu N; Mulas M
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30274291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of New Analytical Microwave-Assisted Extraction Methods for Bioactive Compounds from Myrtle (
    V González de Peredo A; Vázquez-Espinosa M; Espada-Bellido E; Jiménez-Cantizano A; Ferreiro-González M; Amores-Arrocha A; Palma M; G Barroso C; F Barbero G
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30453481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower.
    Aidi Wannes W; Mhamdi B; Sriti J; Ben Jemia M; Ouchikh O; Hamdaoui G; Kchouk ME; Marzouk B
    Food Chem Toxicol; 2010 May; 48(5):1362-70. PubMed ID: 20211674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the supercritical CO(2) extraction of the volatile constituents from Juniperus communis obtained under different treatments of the "berries" (cones).
    Chatzopoulou P; de Haan A; Katsiotis ST
    Planta Med; 2002 Sep; 68(9):827-31. PubMed ID: 12357396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myrtus communis berry color morphs: a comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities.
    Messaoud C; Boussaid M
    Chem Biodivers; 2011 Feb; 8(2):300-10. PubMed ID: 21337502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.
    Shao Q; Huang Y; Zhou A; Guo H; Zhang A; Wang Y
    J Sci Food Agric; 2014 May; 94(7):1430-6. PubMed ID: 24834501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central composite design for the optimization of supercritical carbon dioxide fluid extraction of fatty acids from Borago officinalis L. flower.
    Ramandi NF; Najafi NM; Raofie F; Ghasemi E
    J Food Sci; 2011; 76(9):C1262-6. PubMed ID: 22416687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochemical analysis of Myrtus communis plant: Conventional versus microwave assisted-extraction procedures.
    Bouaoudia-Madi N; Boulekbache-Makhlouf L; Kadri N; Dahmoune F; Remini H; Dairi S; Oukhmanou-Bensidhoum S; Madani K
    J Complement Integr Med; 2017 Jun; 14(4):. PubMed ID: 28731316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].
    Chen FF; Wu Y; Ge FH
    Zhong Yao Cai; 2012 Mar; 35(3):479-82. PubMed ID: 22876691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the composition of Tunisian myrtle berries (Myrtus communis L.) alcohol extracts.
    Snoussi A; Hayet BH; Essaidi I; Zgoulli S; Moncef CM; Thonart P; Bouzouita N
    J Agric Food Chem; 2012 Jan; 60(2):608-14. PubMed ID: 22050534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of volatile components, fatty acids, and phytosterols of Abies koreana growing in Poland.
    Wajs-Bonikowska A; Olejnika K; Bonikowski R; Banaszczakb P
    Nat Prod Commun; 2013 Sep; 8(9):1297-300. PubMed ID: 24273870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenolic Compounds, Volatiles and Antioxidant Capacity of White Myrtle Berry Liqueurs.
    Serreli G; Jerković I; Gil KA; Marijanović Z; Pacini V; Tuberoso CIG
    Plant Foods Hum Nutr; 2017 Jun; 72(2):205-210. PubMed ID: 28447255
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Gan Y; Xu D; Zhang J; Wang Z; Wang S; Guo H; Zhang K; Li Y; Wang Y
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933060
    [No Abstract]   [Full Text] [Related]  

  • 20. Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts.
    Amensour M; Sendra E; Abrini J; Bouhdid S; Pérez-Alvarez JA; Fernández-López J
    Nat Prod Commun; 2009 Jun; 4(6):819-24. PubMed ID: 19634329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.