These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 38675987)
1. Back to the Basics of SARS-CoV-2 Biochemistry: Microvascular Occlusive Glycan Bindings Govern Its Morbidities and Inform Therapeutic Responses. Scheim DE; Parry PI; Rabbolini DJ; Aldous C; Yagisawa M; Clancy R; Borody TJ; Hoy WE Viruses; 2024 Apr; 16(4):. PubMed ID: 38675987 [TBL] [Abstract][Full Text] [Related]
2. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Scheim DE; Vottero P; Santin AD; Hirsh AG Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069362 [TBL] [Abstract][Full Text] [Related]
3. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. Scheim DE Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269703 [TBL] [Abstract][Full Text] [Related]
4. SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis. Panigrahi S; Goswami T; Ferrari B; Antonelli CJ; Bazdar DA; Gilmore H; Freeman ML; Lederman MM; Sieg SF Microbiol Spectr; 2021 Dec; 9(3):e0073521. PubMed ID: 34935423 [TBL] [Abstract][Full Text] [Related]
6. SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects. Boschi C; Scheim DE; Bancod A; Militello M; Bideau ML; Colson P; Fantini J; Scola B Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555121 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2. Rowland R; Brandariz-Nuñez A Microbiol Spectr; 2021 Oct; 9(2):e0119921. PubMed ID: 34494876 [TBL] [Abstract][Full Text] [Related]
8. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Kim CH Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604730 [TBL] [Abstract][Full Text] [Related]
9. Docked severe acute respiratory syndrome coronavirus 2 proteins within the cutaneous and subcutaneous microvasculature and their role in the pathogenesis of severe coronavirus disease 2019. Magro CM; Mulvey JJ; Laurence J; Seshan S; Crowson AN; Dannenberg AJ; Salvatore S; Harp J; Nuovo GJ Hum Pathol; 2020 Dec; 106():106-116. PubMed ID: 33058948 [TBL] [Abstract][Full Text] [Related]
10. SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19. Dakal TC Immunobiology; 2021 Jan; 226(1):152021. PubMed ID: 33232865 [TBL] [Abstract][Full Text] [Related]
11. Critical ACE2 Determinants of SARS-CoV-2 and Group 2B Coronavirus Infection and Replication. Adams LE; Dinnon KH; Hou YJ; Sheahan TP; Heise MT; Baric RS mBio; 2021 Mar; 12(2):. PubMed ID: 33727353 [TBL] [Abstract][Full Text] [Related]
13. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity. Ou J; Zhou Z; Dai R; Zhang J; Zhao S; Wu X; Lan W; Ren Y; Cui L; Lan Q; Lu L; Seto D; Chodosh J; Wu J; Zhang G; Zhang Q J Virol; 2021 Jul; 95(16):e0061721. PubMed ID: 34105996 [TBL] [Abstract][Full Text] [Related]
14. Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Barre A; Van Damme EJM; Simplicien M; Le Poder S; Klonjkowski B; Benoist H; Peyrade D; Rougé P Cells; 2021 Jun; 10(7):. PubMed ID: 34203435 [TBL] [Abstract][Full Text] [Related]
15. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions. Day CJ; Bailly B; Guillon P; Dirr L; Jen FE; Spillings BL; Mak J; von Itzstein M; Haselhorst T; Jennings MP mBio; 2021 Mar; 12(2):. PubMed ID: 33785634 [TBL] [Abstract][Full Text] [Related]
16. Cell-Free Hemoglobin Does Not Attenuate the Effects of SARS-CoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells. Jana S; Heaven MR; Alayash AI Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445747 [TBL] [Abstract][Full Text] [Related]
17. Exploring the Role of Glycans in the Interaction of SARS-CoV-2 RBD and Human Receptor ACE2. Nguyen K; Chakraborty S; Mansbach RA; Korber B; Gnanakaran S Viruses; 2021 May; 13(5):. PubMed ID: 34067878 [TBL] [Abstract][Full Text] [Related]
18. SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Khaddaj-Mallat R; Aldib N; Bernard M; Paquette AS; Ferreira A; Lecordier S; Saghatelyan A; Flamand L; ElAli A Neurobiol Dis; 2021 Dec; 161():105561. PubMed ID: 34780863 [TBL] [Abstract][Full Text] [Related]
19. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. Zhang S; Liu Y; Wang X; Yang L; Li H; Wang Y; Liu M; Zhao X; Xie Y; Yang Y; Zhang S; Fan Z; Dong J; Yuan Z; Ding Z; Zhang Y; Hu L J Hematol Oncol; 2020 Sep; 13(1):120. PubMed ID: 32887634 [TBL] [Abstract][Full Text] [Related]
20. In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Jafary F; Jafari S; Ganjalikhany MR Sci Rep; 2021 Mar; 11(1):6927. PubMed ID: 33767306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]