These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Estimation of tomato water status with photochemical reflectance index and machine learning: Assessment from proximal sensors and UAV imagery. Tang Z; Jin Y; Brown PH; Park M Front Plant Sci; 2023; 14():1057733. PubMed ID: 37089640 [TBL] [Abstract][Full Text] [Related]
23. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping. Nguyen C; Sagan V; Bhadra S; Moose S Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425 [TBL] [Abstract][Full Text] [Related]
24. Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery. Falco N; Wainwright HM; Dafflon B; Ulrich C; Soom F; Peterson JE; Brown JB; Schaettle KB; Williamson M; Cothren JD; Ham RG; McEntire JA; Hubbard SS Sci Rep; 2021 Mar; 11(1):7046. PubMed ID: 33782488 [TBL] [Abstract][Full Text] [Related]
25. Water Stress Identification of Winter Wheat Crop with State-of-the-Art AI Techniques and High-Resolution Thermal-RGB Imagery. Chandel NS; Rajwade YA; Dubey K; Chandel AK; Subeesh A; Tiwari MK Plants (Basel); 2022 Dec; 11(23):. PubMed ID: 36501383 [TBL] [Abstract][Full Text] [Related]
26. Yield estimation of high-density cotton fields using low-altitude UAV imaging and deep learning. Li F; Bai J; Zhang M; Zhang R Plant Methods; 2022 Apr; 18(1):55. PubMed ID: 35477580 [TBL] [Abstract][Full Text] [Related]
27. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sun J; Di L; Sun Z; Shen Y; Lai Z Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31600963 [TBL] [Abstract][Full Text] [Related]
28. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Butt FM; Hussain L; Mahmood A; Lone KJ Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099 [TBL] [Abstract][Full Text] [Related]
29. Integrating multi-modal remote sensing, deep learning, and attention mechanisms for yield prediction in plant breeding experiments. Aviles Toledo C; Crawford MM; Tuinstra MR Front Plant Sci; 2024; 15():1408047. PubMed ID: 39119495 [TBL] [Abstract][Full Text] [Related]
30. Identifying and mapping individual medicinal plant Lamiophlomis rotata at high elevations by using unmanned aerial vehicles and deep learning. Ding R; Luo J; Wang C; Yu L; Yang J; Wang M; Zhong S; Gu R Plant Methods; 2023 Apr; 19(1):38. PubMed ID: 37005675 [TBL] [Abstract][Full Text] [Related]
31. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography. Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426 [TBL] [Abstract][Full Text] [Related]
32. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles. Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382 [TBL] [Abstract][Full Text] [Related]
33. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Khademi Z; Ebrahimi F; Kordy HM Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083 [TBL] [Abstract][Full Text] [Related]
34. Secure and Privacy-Preserving Intrusion Detection and Prevention in the Internet of Unmanned Aerial Vehicles. Ntizikira E; Lei W; Alblehai F; Saleem K; Lodhi MA Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836907 [TBL] [Abstract][Full Text] [Related]
35. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery. Li J; Li Y; Qiao J; Li L; Wang X; Yao J; Liao G Front Plant Sci; 2023; 14():1101143. PubMed ID: 36798713 [TBL] [Abstract][Full Text] [Related]
36. Target detection and classification via EfficientDet and CNN over unmanned aerial vehicles. Yusuf MO; Hanzla M; Al Mudawi N; Sadiq T; Alabdullah B; Rahman H; Algarni A Front Neurorobot; 2024; 18():1448538. PubMed ID: 39280254 [TBL] [Abstract][Full Text] [Related]
37. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Kattenborn T; Eichel J; Fassnacht FE Sci Rep; 2019 Nov; 9(1):17656. PubMed ID: 31776370 [TBL] [Abstract][Full Text] [Related]
38. Real-Time Vehicle-Detection Method in Bird-View Unmanned-Aerial-Vehicle Imagery. Han S; Yoo J; Kwon S Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540275 [TBL] [Abstract][Full Text] [Related]
39. Evaluating the Effect of Deficit Irrigation on Yield and Water Use Efficiency of Drip Irrigation Cotton under Film in Xinjiang Based on Meta-Analysis. Xu Q; Dong X; Huang W; Li Z; Huang T; Song Z; Yang Y; Chen J Plants (Basel); 2024 Feb; 13(5):. PubMed ID: 38475485 [TBL] [Abstract][Full Text] [Related]
40. Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data. Fei S; Hassan MA; Ma Y; Shu M; Cheng Q; Li Z; Chen Z; Xiao Y Front Plant Sci; 2021; 12():730181. PubMed ID: 34987529 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]