These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38676097)

  • 1. The Design and Ground Test Verification of an Energy-Efficient Wireless System for the Fatigue Monitoring of Wind Turbine Blades Based on Bistable Piezoelectric Energy Harvesting.
    Plagianakos T; Chrysochoidis N; Bolanakis G; Leventakis N; Margelis N; Sotiropoulos M; Giannopoulos F; Kardarakos GC; Spandonidis C; Papadopoulos E; Saravanos D
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review.
    Ding S; Yang C; Zhang S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement.
    Muxica D; Rivera S; Orchard ME; Ahumada C; Jaramillo F; Bravo F; Gutiérrez JM; Astroza R
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38543996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind turbine blades fault diagnosis based on vibration dataset analysis.
    Ogaili AAF; Abdulhady Jaber A; Hamzah MN
    Data Brief; 2023 Aug; 49():109414. PubMed ID: 37520651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Concept of Sustainable Wind Turbine Blades: Bio-Inspired Design with Engineered Adhesives.
    Mishnaevsky L; Jafarpour M; Krüger J; Gorb SN
    Biomimetics (Basel); 2023 Sep; 8(6):. PubMed ID: 37887579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on a rotary piezoelectric wind energy harvester with bilateral excitation.
    He L; Zheng X; Li W; Gu X; Han Y; Cheng G
    Rev Sci Instrum; 2023 Feb; 94(2):025004. PubMed ID: 36859045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Impact Energy Harvesting in Composite Beams with Piezoelectric Transducers.
    Margelis N; Plagianakos TS; Karydis-Karandreas P; Papadopoulos EG
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacture of High-Performance Tidal Turbine Blades Using Advanced Composite Manufacturing Technologies.
    Finnegan W; Allen R; Glennon C; Maguire J; Flanagan M; Flanagan T
    Appl Compos Mater (Dordr); 2021; 28(6):2061-2086. PubMed ID: 35035103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.
    Joshuva A; Sugumaran V
    ISA Trans; 2017 Mar; 67():160-172. PubMed ID: 28189258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation.
    Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Use of Wind Turbine Blades to Build Road Noise Barriers as an Example of a Circular Economy Model.
    Broniewicz M; Halicka A; Buda-Ożóg L; Broniewicz F; Nykiel D; Jabłoński Ł
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.
    Tang J; Soua S; Mares C; Gan TH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting.
    Peddigari M; Kim GY; Park CH; Min Y; Kim JW; Ahn CW; Choi JJ; Hahn BD; Choi JH; Park DS; Hong JK; Yeom JT; Park KI; Jeong DY; Yoon WH; Ryu J; Hwang GT
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31085985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring.
    Panayanthatta N; Clementi G; Ouhabaz M; Costanza M; Margueron S; Bartasyte A; Basrour S; Bano E; Montes L; Dehollain C; La Rosa R
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wind energy harvester using piezoelectric materials.
    Lu C; Jiang X; Li L; Zhou H; Yang A; Xin M; Fu G; Wang X
    Rev Sci Instrum; 2022 Mar; 93(3):031502. PubMed ID: 35364975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.