BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38676129)

  • 1. A Phosphenotron Device for Sensoric Spatial Resolution of Phosphenes within the Visual Field Using Non-Invasive Transcranial Alternating Current Stimulation.
    Sadrzadeh-Afsharazar F; Douplik A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive transcranial alternating current stimulation of spatially resolved phosphenes.
    Sadrzadeh-Afsharazar F; Douplik A
    Front Neurosci; 2023; 17():1228326. PubMed ID: 37662103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent and montage-based differences in phosphene perception thresholds via transcranial alternating current stimulation.
    Evans ID; Palmisano S; Loughran SP; Legros A; Croft RJ
    Bioelectromagnetics; 2019 Sep; 40(6):365-374. PubMed ID: 31338856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach for documenting phosphenes induced by transcranial magnetic stimulation.
    Elkin-Frankston S; Fried PJ; Pascual-Leone A; Rushmore RJ; Valero-Cabr A
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20360672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes.
    Laakso I; Hirata A
    J Neural Eng; 2013 Aug; 10(4):046009. PubMed ID: 23813466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin.
    Kar K; Krekelberg B
    J Neurophysiol; 2012 Oct; 108(8):2173-8. PubMed ID: 22855777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review.
    Schutter DJ
    Neuroimage; 2016 Oct; 140():83-8. PubMed ID: 26453929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
    Kammer T; Beck S; Erb M; Grodd W
    Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waves of awareness for occipital and parietal phosphenes perception.
    Bagattini C; Mazzi C; Savazzi S
    Neuropsychologia; 2015 Apr; 70():114-25. PubMed ID: 25698639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction.
    Thiele C; Zaehle T; Haghikia A; Ruhnau P
    Sci Rep; 2021 Nov; 11(1):22245. PubMed ID: 34782626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects.
    Indahlastari A; Kasinadhuni AK; Saar C; Castellano K; Mousa B; Chauhan M; Mareci TH; Sadleir RJ
    Neural Plast; 2018; 2018():8525706. PubMed ID: 30627150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fMRI of retina-originated phosphenes experienced by patients with Leber congenital amaurosis.
    Ashtari M; Cyckowski L; Yazdi A; Viands A; Marshall K; Bókkon I; Maguire A; Bennett J
    PLoS One; 2014; 9(1):e86068. PubMed ID: 24465873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migraine-linked characteristics of transcranial magnetic stimulation-induced phosphenes.
    Ekkert A; Noreikaitė K; Valiulis V; Ryliškienė K
    J Integr Neurosci; 2019 Dec; 18(4):463-466. PubMed ID: 31912706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.