These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38676211)

  • 1. Action Recognition of Taekwondo Unit Actions Using Action Images Constructed with Time-Warped Motion Profiles.
    Lim J; Luo C; Lee S; Song YE; Jung H
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TUHAD: Taekwondo Unit Technique Human Action Dataset with Key Frame-Based CNN Action Recognition.
    Lee J; Jung H
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viewpoint-Agnostic Taekwondo Action Recognition Using Synthesized Two-Dimensional Skeletal Datasets.
    Luo C; Kim SW; Park HY; Lim K; Jung H
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taekwondo motion image recognition model based on hybrid neural network algorithm for wearable sensor of Internet of Things.
    Lu X
    Sci Rep; 2023 Aug; 13(1):13097. PubMed ID: 37567933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Direct Acyclic Graphs to Enhance Skeleton-Based Action Recognition with a Linear-Map Convolution Neural Network.
    Tan TH; Hus JH; Liu SH; Huang YF; Gochoo M
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Motion Pattern Recognition and Feature Extraction: An Approach Using Multi-Information Fusion.
    Li X; Liu J; Huang Y; Wang D; Miao Y
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of Upper Limb Action Intention Based on IMU.
    Cui JW; Li ZG; Du H; Yan BY; Lu PD
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Inertial Sensor Module for Categorizing Anomalous Kicks in Taekwondo and Monitoring the Level of Impact.
    Jang WJ; Lee KK; Lee WJ; Lim SH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNN-LSTM Model for Recognizing Video-Recorded Actions Performed in a Traditional Chinese Exercise.
    Chen J; Wang J; Yuan Q; Yang Z
    IEEE J Transl Eng Health Med; 2023; 11():351-359. PubMed ID: 37435544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust human locomotion and localization activity recognition over multisensory.
    Khan D; Alonazi M; Abdelhaq M; Al Mudawi N; Algarni A; Jalal A; Liu H
    Front Physiol; 2024; 15():1344887. PubMed ID: 38449788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head Gesture Recognition Combining Activity Detection and Dynamic Time Warping.
    Li H; Hu H
    J Imaging; 2024 May; 10(5):. PubMed ID: 38786577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
    Dehzangi O; Taherisadr M; ChangalVala R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition.
    Wei H; Jafari R; Kehtarnavaz N
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting Finger and Wrist Movements Using Only a Wrist-Worn, Inertial Measurement Unit: Toward Practical Wearable Sensing for Hand-Related Healthcare Applications.
    Okita S; Yakunin R; Korrapati J; Ibrahim M; Schwerz de Lucena D; Chan V; Reinkensmeyer DJ
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical-tactical analysis of youth olympic taekwondo combat.
    Tornello F; Capranica L; Minganti C; Chiodo S; Condello G; Tessitore A
    J Strength Cond Res; 2014 Apr; 28(4):1151-7. PubMed ID: 24077373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation.
    Dominguez Veiga JJ; O'Reilly M; Whelan D; Caulfield B; Ward TE
    JMIR Mhealth Uhealth; 2017 Aug; 5(8):e115. PubMed ID: 28778851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNN Deep Learning with Wavelet Image Fusion of CCD RGB-IR and Depth-Grayscale Sensor Data for Hand Gesture Intention Recognition.
    Ding IJ; Zheng NW
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.