These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38676266)

  • 1. Implementing Gait Kinematic Trajectory Forecasting Models on an Embedded System.
    Shayne M; Molina LA; Hu B; Chomiak T
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features.
    Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks.
    Gholami M; Rezaei A; Cuthbert TJ; Napier C; Menon C
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane.
    Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S
    Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Lower Limb Kinematics Using a Reduced Wearable Sensor Count.
    Sy L; Raitor M; Rosario MD; Khamis H; Kark L; Lovell NH; Redmond SJ
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1293-1304. PubMed ID: 32970590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders.
    Kolaghassi R; Al-Hares MK; Marcelli G; Sirlantzis K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses.
    Vu HTT; Dong D; Cao HL; Verstraten T; Lefeber D; Vanderborght B; Geeroms J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Wearable-Inertial-Sensor-Based Gait Posture Evaluation for Subjects with Unbalanced Gaits.
    Qiu S; Wang H; Li J; Zhao H; Wang Z; Wang J; Wang Q; Plettemeier D; Bärhold M; Bauer T; Ru B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Inertial Sensor System Towards Daily Human Kinematic Gait Analysis: Benchmarking Analysis to MVN BIOMECH.
    Figueiredo J; Carvalho SP; Vilas-Boas JP; Gonçalves LM; Moreno JC; Santos CP
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible wearable sensor for knee flexion assessment during gait.
    Papi E; Bo YN; McGregor AH
    Gait Posture; 2018 May; 62():480-483. PubMed ID: 29674288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Trajectory Prediction on an Embedded Microcontroller Using Deep Learning.
    Karakish M; Fouz MA; ELsawaf A
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors.
    Sharifi-Renani M; Mahoor MH; Clary CW
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-of-the-Art Review on Wearable Obstacle Detection Systems Developed for Assistive Technologies and Footwear.
    Joseph AM; Kian A; Begg R
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of gait trajectories based on the Long Short Term Memory neural networks.
    Zaroug A; Garofolini A; Lai DTH; Mudie K; Begg R
    PLoS One; 2021; 16(8):e0255597. PubMed ID: 34351994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.