These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38676274)

  • 1. Adaptive Cruise Control Based on Safe Deep Reinforcement Learning.
    Zhao R; Wang K; Che W; Li Y; Fan Y; Gao F
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safe, Efficient, and Comfortable Autonomous Driving Based on Cooperative Vehicle Infrastructure System.
    Chen J; Zhao C; Jiang S; Zhang X; Li Z; Du Y
    Int J Environ Res Public Health; 2023 Jan; 20(1):. PubMed ID: 36613215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Robust Decision-Making for Autonomous Highway Driving Based on Safe Reinforcement Learning.
    Zhao R; Chen Z; Fan Y; Li Y; Gao F
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning.
    Zhang K; Pu T; Zhang Q; Nie Z
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Cruise System Based on Fuzzy MPC and Machine Learning State Observer.
    Guo J; Wang Y; Chu L; Bai C; Hou Z; Zhao D
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system.
    Li Y; Wang H; Wang W; Liu S; Xiang Y
    Traffic Inj Prev; 2016 Aug; 17(6):597-603. PubMed ID: 26761633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.
    Bianchi Piccinini GF; Rodrigues CM; Leitão M; Simões A
    J Safety Res; 2014 Jun; 49():77-84. PubMed ID: 24913490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience.
    Zhang J; Ma N; Wu Z; Wang C; Yao Y
    Math Biosci Eng; 2024 May; 21(5):6077-6096. PubMed ID: 38872570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Safe Reinforcement Learning With Full-State Constraints and Constrained Adaptation for Autonomous Vehicles.
    Zhang Y; Liang X; Li D; Ge SS; Gao B; Chen H; Lee TH
    IEEE Trans Cybern; 2024 Mar; 54(3):1907-1920. PubMed ID: 37363853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-Infinitely Constrained Markov Decision Processes and Provably Efficient Reinforcement Learning.
    Zhang L; Peng Y; Yang W; Zhang Z
    IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):3722-3735. PubMed ID: 38163315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on reinforcement learning-based safe decision-making methodology for multiple unmanned aerial vehicles.
    Yue L; Yang R; Zhang Y; Zuo J
    Front Neurorobot; 2022; 16():1105480. PubMed ID: 36704719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety-oriented automated vehicle longitudinal control considering both stability and damping behavior.
    Dai Y; Wang C; Xie Y
    Accid Anal Prev; 2024 Apr; 198():107486. PubMed ID: 38310835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective deep reinforcement learning approach for adaptive traffic signal control system with concurrent optimization of safety, efficiency, and decarbonization at intersections.
    Zhang G; Chang F; Jin J; Yang F; Huang H
    Accid Anal Prev; 2024 May; 199():107451. PubMed ID: 38367397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving.
    Huang Z; Wu J; Lv C
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7391-7403. PubMed ID: 35081030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimistic reinforcement learning by forward Kullback-Leibler divergence optimization.
    Kobayashi T
    Neural Netw; 2022 Aug; 152():169-180. PubMed ID: 35533503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CVaR-Constrained Policy Optimization for Safe Reinforcement Learning.
    Zhang Q; Leng S; Ma X; Liu Q; Wang X; Liang B; Liu Y; Yang J
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38393836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways.
    Li Y; Li Z; Wang H; Wang W; Xing L
    Accid Anal Prev; 2017 Jul; 104():137-145. PubMed ID: 28500990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.