These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38676332)

  • 41. Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells.
    Wen J; Zhao Y; Wu P; Liu Y; Zheng X; Lin R; Wan S; Li K; Luo H; Tian Y; Li L; Tan H
    Nat Commun; 2023 Nov; 14(1):7118. PubMed ID: 37932289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimizing Crystallization in Wide-Bandgap Mixed Halide Perovskites for High-Efficiency Solar Cells.
    An Y; Zhang N; Zeng Z; Cai Y; Jiang W; Qi F; Ke L; Lin FR; Tsang SW; Shi T; Jen AK; Yip HL
    Adv Mater; 2024 Apr; 36(17):e2306568. PubMed ID: 37677058
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Suppressing surface and interface recombination to afford efficient and stable inverted perovskite solar cells.
    He X; Arain Z; Liu C; Yang Y; Chen J; Zhang X; Huang J; Ding Y; Liu X; Dai S
    Nanoscale; 2024 Sep; 16(36):17042-17048. PubMed ID: 39189350
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface Crystallization Enhancement and Defect Passivation for Efficiency and Stability Enhancement of Inverted Wide-Bandgap Perovskite Solar Cells.
    Dong Z; Men J; Wang J; Huang Z; Zhai Z; Wang Y; Xie X; Zhang C; Lin Y; Wu J; Zhang J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suppressing Halide Segregation via Pyridine-Derivative Isomers Enables Efficient 1.68 eV Bandgap Perovskite Solar Cells.
    Yang L; Fang Z; Jin Y; Feng H; Deng B; Zheng L; Xu P; Chen J; Chen X; Zhou Y; Shi C; Gao W; Yang J; Xu X; Tian C; Xie L; Wei Z
    Adv Mater; 2024 May; 36(21):e2311923. PubMed ID: 38400811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Achieving High Efficiency in Solution-Processed Perovskite Solar Cells Using C
    Lin HS; Jeon I; Xiang R; Seo S; Lee JW; Li C; Pal A; Manzhos S; Goorsky MS; Yang Y; Maruyama S; Matsuo Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39590-39598. PubMed ID: 30259726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ion-Diffusion Management Enables All-Interface Defect Passivation of Perovskite Solar Cells.
    Shen L; Song P; Zheng L; Wang L; Zhang X; Liu K; Liang Y; Tian W; Luo Y; Qiu J; Tian C; Xie L; Wei Z
    Adv Mater; 2023 Sep; 35(39):e2301624. PubMed ID: 37358373
    [TBL] [Abstract][Full Text] [Related]  

  • 48. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction.
    Lin R; Wang Y; Lu Q; Tang B; Li J; Gao H; Gao Y; Li H; Ding C; Wen J; Wu P; Liu C; Zhao S; Xiao K; Liu Z; Ma C; Deng Y; Li L; Fan F; Tan H
    Nature; 2023 Aug; 620(7976):994-1000. PubMed ID: 37290482
    [TBL] [Abstract][Full Text] [Related]  

  • 49. C
    Yu X; Ge W; Fan L; Fan B; Peng R; Jin B
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):553-559. PubMed ID: 37423182
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface Passivation by Sulfur-Based 2D (TEA)
    Kundar M; Bhandari S; Chung S; Cho K; Sharma SK; Singh R; Pal SK
    ACS Omega; 2023 Apr; 8(14):12842-12852. PubMed ID: 37065021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bromine Doping as an Efficient Strategy to Reduce the Interfacial Defects in Hybrid Two-Dimensional/Three-Dimensional Stacking Perovskite Solar Cells.
    Lv Y; Shi Y; Song X; Liu J; Wang M; Wang S; Feng Y; Jin S; Hao C
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31755-31764. PubMed ID: 30136568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Durable Defect Passivation of the Grain Surface in Perovskite Solar Cells with π-Conjugated Sulfamic Acid Additives.
    Cao K; Huang Y; Ge M; Huang F; Shi W; Wu Y; Cheng Y; Qian J; Liu L; Chen S
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26013-26022. PubMed ID: 34048215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overcoming C
    Ye F; Zhang S; Warby J; Wu J; Gutierrez-Partida E; Lang F; Shah S; Saglamkaya E; Sun B; Zu F; Shoaee S; Wang H; Stiller B; Neher D; Zhu WH; Stolterfoht M; Wu Y
    Nat Commun; 2022 Dec; 13(1):7454. PubMed ID: 36460635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dually Modified Wide-Bandgap Perovskites by Phenylethylammonium Acetate toward Highly Efficient Solar Cells with Low Photovoltage Loss.
    Chen J; Wang D; Chen S; Hu H; Li Y; Huang Y; Zhang Z; Jiang Z; Xu J; Sun X; So SK; Peng Y; Wang X; Zhu X; Xu B
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43246-43256. PubMed ID: 36112025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CsPbCl
    Li R; Chen B; Ren N; Wang P; Shi B; Xu Q; Zhao H; Han W; Zhu Z; Liu J; Huang Q; Zhang D; Zhao Y; Zhang X
    Adv Mater; 2022 Jul; 34(27):e2201451. PubMed ID: 35476756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous Interfacial Modification and Defect Passivation for Wide-Bandgap Semitransparent Perovskite Solar Cells with 14.4% Power Conversion Efficiency and 38% Average Visible Transmittance.
    Shi H; Zhang L; Huang H; Wang X; Li Z; Xuan D; Wang C; Ou Y; Ni C; Li D; Chi D; Huang S
    Small; 2022 Aug; 18(31):e2202144. PubMed ID: 35802913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Advances in Wide Bandgap Perovskite Solar Cells: Focus on Lead-Free Materials for Tandem Structures.
    Jang WJ; Jang HW; Kim SY
    Small Methods; 2024 Feb; 8(2):e2300207. PubMed ID: 37203293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amphiphilic Fullerenes Employed to Improve the Quality of Perovskite Films and the Stability of Perovskite Solar Cells.
    Fu Q; Xiao S; Tang X; Chen Y; Hu T
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24782-24788. PubMed ID: 31241891
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Efficient and Stable 2D/3D Heterojunction Perovskite Solar Cells by In Situ Interface Modification with [(
    Xiong Y; Li M; Peng L; Thant AA; Wang N; Zhu Y; Xu L
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15420-15428. PubMed ID: 36926813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells.
    Yu Y; Liu R; Zhang F; Liu C; Wu Q; Zhang M; Yu H
    J Colloid Interface Sci; 2022 Jan; 605():710-717. PubMed ID: 34365307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.