These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 38676562)

  • 21. The Arabidopsis glutathione transferases, AtGSTF8 and AtGSTU19 are involved in the maintenance of root redox homeostasis affecting meristem size and salt stress sensitivity.
    Horváth E; Bela K; Holinka B; Riyazuddin R; Gallé Á; Hajnal Á; Hurton Á; Fehér A; Csiszár J
    Plant Sci; 2019 Jun; 283():366-374. PubMed ID: 31128707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses.
    Farooq MA; Niazi AK; Akhtar J; Saifullah ; Farooq M; Souri Z; Karimi N; Rengel Z
    Plant Physiol Biochem; 2019 Aug; 141():353-369. PubMed ID: 31207496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the language and physiology of dormancy and quiescence in plants.
    Considine MJ; Considine JA
    J Exp Bot; 2016 May; 67(11):3189-203. PubMed ID: 27053719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ROS production and signalling in chloroplasts: cornerstones and evolving concepts.
    Foyer CH; Hanke G
    Plant J; 2022 Aug; 111(3):642-661. PubMed ID: 35665548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox regulation of root apical meristem organization: connecting root development to its environment.
    De Tullio MC; Jiang K; Feldman LJ
    Plant Physiol Biochem; 2010 May; 48(5):328-36. PubMed ID: 20031434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial Redox Signaling in O
    Gao L; Ortega-Sáenz P; Moreno-Domínguez A; López-Barneo J
    Antioxid Redox Signal; 2022 Aug; 37(4-6):274-289. PubMed ID: 35044243
    [No Abstract]   [Full Text] [Related]  

  • 27. Redox regulation in shoot growth, SAM maintenance and flowering.
    Schippers JH; Foyer CH; van Dongen JT
    Curr Opin Plant Biol; 2016 Feb; 29():121-8. PubMed ID: 26799134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manganese superoxide dismutase regulates a redox cycle within the cell cycle.
    Sarsour EH; Kalen AL; Goswami PC
    Antioxid Redox Signal; 2014 Apr; 20(10):1618-27. PubMed ID: 23590434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals.
    Mailloux RJ
    Redox Biol; 2020 May; 32():101472. PubMed ID: 32171726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Common regulatory themes in meristem development and whole-plant homeostasis.
    Beveridge CA; Mathesius U; Rose RJ; Gresshoff PM
    Curr Opin Plant Biol; 2007 Feb; 10(1):44-51. PubMed ID: 17157052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen and reactive oxygen species-dependent regulation of plant growth and development.
    Considine MJ; Foyer CH
    Plant Physiol; 2021 May; 186(1):79-92. PubMed ID: 33793863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Organism defense against reactive oxygen species].
    Puzanowska-Tarasiewicz H; Kuźmicka L; Tarasiewicz M
    Wiad Lek; 2009; 62(4):248-56. PubMed ID: 20648768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox signaling in plants.
    Foyer CH; Noctor G
    Antioxid Redox Signal; 2013 Jun; 18(16):2087-90. PubMed ID: 23442120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch.
    Palma FR; He C; Danes JM; Paviani V; Coelho DR; Gantner BN; Bonini MG
    Antioxid Redox Signal; 2020 Apr; 32(10):701-714. PubMed ID: 31968997
    [No Abstract]   [Full Text] [Related]  

  • 37. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.
    Wang K; Zhang T; Dong Q; Nice EC; Huang C; Wei Y
    Cell Death Dis; 2013 Mar; 4(3):e537. PubMed ID: 23492768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression.
    Collins SJ; Tumpach C; Groveman BR; Drew SC; Haigh CL
    Cell Mol Life Sci; 2018 Sep; 75(17):3231-3249. PubMed ID: 29574582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ROS: Important factor in plant stem cell fate regulation.
    Qin Q
    J Plant Physiol; 2023 Oct; 289():154082. PubMed ID: 37690340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What to do with low O
    Eaton L; Pamenter ME
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Sep; 271():111259. PubMed ID: 35724954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.