These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38676636)

  • 1. Lowering the Schottky Barrier Height by Quasi-van der Waals Contacts for High-Performance p-Type MoTe
    Yang Z; Peng X; Wang J; Lin J; Zhang C; Tang B; Zhang J; Yang W
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38676636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-van-der-Waals Barrier-Free Contacts for High-Mobility Transistors.
    Zhang X; Yu H; Tang W; Wei X; Gao L; Hong M; Liao Q; Kang Z; Zhang Z; Zhang Y
    Adv Mater; 2022 Aug; 34(34):e2109521. PubMed ID: 35165952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. van der Waals Epitaxy of High-Mobility Polymorphic Structure of Mo
    Lee RS; Kim D; Pawar SA; Kim T; Shin JC; Kang SW
    ACS Nano; 2019 Jan; 13(1):642-648. PubMed ID: 30609346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZrTe
    Wen X; Lei W; Li X; Di B; Zhou Y; Zhang J; Zhang Y; Li L; Chang H; Zhang W
    Nano Lett; 2023 Sep; 23(18):8419-8425. PubMed ID: 37708326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecule-Upgraded van der Waals Contacts for Schottky-Barrier-Free Electronics.
    Zhang X; Kang Z; Gao L; Liu B; Yu H; Liao Q; Zhang Z; Zhang Y
    Adv Mater; 2021 Nov; 33(45):e2104935. PubMed ID: 34569109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on Contact Properties of 2D van der Waals Semimetallic 1T-TiS
    Yoon H; Lee S; Seo J; Sohn I; Jun S; Hong S; Im S; Nam Y; Kim HJ; Lee Y; Chung SM; Kim H
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):12095-12105. PubMed ID: 38384197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of p-type 2D single-crystalline transistor arrays with Fermi-level-tuned van der Waals semimetal electrodes.
    Song S; Yoon A; Jang S; Lynch J; Yang J; Han J; Choe M; Jin YH; Chen CY; Cheon Y; Kwak J; Jeong C; Cheong H; Jariwala D; Lee Z; Kwon SY
    Nat Commun; 2023 Aug; 14(1):4747. PubMed ID: 37550303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance p-Type Quasi-Ohmic of WSe
    Le XP; Venkatesan A; Daw D; Nguyen TA; Baithi M; Bouzid H; Nguyen TD
    ACS Appl Mater Interfaces; 2024 Oct; 16(39):52645-52652. PubMed ID: 39287514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides.
    Ma L; Wang Y; Liu Y
    Chem Rev; 2024 Mar; 124(5):2583-2616. PubMed ID: 38427801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors.
    Wang Y; Kim JC; Wu RJ; Martinez J; Song X; Yang J; Zhao F; Mkhoyan A; Jeong HY; Chhowalla M
    Nature; 2019 Apr; 568(7750):70-74. PubMed ID: 30918403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles investigations of the controllable electronic properties and contact types of type II MoTe
    Nguyen ST; Hieu NV; Le-Quoc H; Nguyen-Ba K; Nguyen CV; Phuc HV; Nguyen CQ
    Nanoscale Adv; 2024 Jul; 6(14):3624-3631. PubMed ID: 38989517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MoTe
    Bae GY; Kim J; Kim J; Lee S; Lee E
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topological van der Waals Contact for Two-Dimensional Semiconductors.
    Ghods S; Lee H; Choi JH; Moon JY; Kim S; Kim SI; Kwun HJ; Josline MJ; Kim CY; Hyun SH; Kim SW; Son SK; Lee T; Lee YK; Heo K; Novoselov KS; Lee JH
    ACS Nano; 2024 Sep; ():. PubMed ID: 39264283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermi-Level Pinning-Free WSe
    Jang J; Ra HS; Ahn J; Kim TW; Song SH; Park S; Taniguch T; Watanabe K; Lee K; Hwang DK
    Adv Mater; 2022 May; 34(19):e2109899. PubMed ID: 35306686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alloyed 2D Metal-Semiconductor Heterojunctions: Origin of Interface States Reduction and Schottky Barrier Lowering.
    Kim Y; Kim AR; Yang JH; Chang KE; Kwon JD; Choi SY; Park J; Lee KE; Kim DH; Choi SM; Lee KH; Lee BH; Hahm MG; Cho B
    Nano Lett; 2016 Sep; 16(9):5928-33. PubMed ID: 27552187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffused Beam Energy to Dope van der Waals Electronics and Boost Their Contact Barrier Lowering.
    Lin CY; Lee MP; Chang YM; Tseng YT; Yang FS; Li M; Chen JY; Chen CF; Tsai MY; Lin YC; Ueno K; Yamamoto M; Lo ST; Lien CH; Chiu PW; Tsukagoshi K; Wu WW; Lin YF
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41156-41164. PubMed ID: 36037311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lowering the Schottky barrier height of G/WSSe van der Waals heterostructures by changing the interlayer coupling and applying external biaxial strain.
    Zhang WX; Yin Y; He C
    Phys Chem Chem Phys; 2020 Nov; 22(45):26231-26240. PubMed ID: 33174552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Polarity of MoTe
    Liu X; Islam A; Guo J; Feng PX
    ACS Nano; 2020 Feb; 14(2):1457-1467. PubMed ID: 31909988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact Engineering High-Performance n-Type MoTe
    Mleczko MJ; Yu AC; Smyth CM; Chen V; Shin YC; Chatterjee S; Tsai YC; Nishi Y; Wallace RM; Pop E
    Nano Lett; 2019 Sep; 19(9):6352-6362. PubMed ID: 31314531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface effects of Schottky devices built from MoS
    Li YD; Zhen WL; Weng SR; Hu HJ; Niu R; Yue ZL; Xu F; Zhu WK; Zhang CJ
    J Phys Condens Matter; 2022 Feb; 34(16):. PubMed ID: 35105834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.