These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38676745)
1. Machine learning ensembles, neural network, hybrid and sparse regression approaches for weather based rainfed cotton yield forecast. Kashyap GR; Sridhara S; Manoj KN; Gopakkali P; Das B; Jha PK; Prasad PVV Int J Biometeorol; 2024 Jun; 68(6):1179-1197. PubMed ID: 38676745 [TBL] [Abstract][Full Text] [Related]
2. Prediction of mustard yield using different machine learning techniques: a case study of Rajasthan, India. Vashisth A; Goyal A Int J Biometeorol; 2023 Mar; 67(3):539-551. PubMed ID: 36717403 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. Das B; Nair B; Reddy VK; Venkatesh P Int J Biometeorol; 2018 Oct; 62(10):1809-1822. PubMed ID: 30043218 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of machine learning approaches for prediction of pigeon pea yield based on weather parameters in India. Sridhara S; Manoj KN; Gopakkali P; Kashyap GR; Das B; Singh KK; Srivastava AK Int J Biometeorol; 2023 Jan; 67(1):165-180. PubMed ID: 36323951 [TBL] [Abstract][Full Text] [Related]
5. Comparative evaluation of linear and nonlinear weather-based models for coconut yield prediction in the west coast of India. Das B; Nair B; Arunachalam V; Reddy KV; Venkatesh P; Chakraborty D; Desai S Int J Biometeorol; 2020 Jul; 64(7):1111-1123. PubMed ID: 32152727 [TBL] [Abstract][Full Text] [Related]
6. Forecasting Corn Yield With Machine Learning Ensembles. Shahhosseini M; Hu G; Archontoulis SV Front Plant Sci; 2020; 11():1120. PubMed ID: 32849688 [TBL] [Abstract][Full Text] [Related]
7. An intelligent decision support system for crop yield prediction using hybrid machine learning algorithms. Anbananthen KSM; Subbiah S; Chelliah D; Sivakumar P; Somasundaram V; Velshankar KH; Khan MKAA F1000Res; 2021; 10():1143. PubMed ID: 34987773 [No Abstract] [Full Text] [Related]
8. Correction to: Machine learning ensembles, neural network, hybrid and sparse regression approaches for weather based rainfed cotton yield forecast. Kashyap GR; Sridhara S; Manoj KN; Gopakkali P; Das B; Jha PK; Prasad PVV Int J Biometeorol; 2024 Jun; 68(6):1199. PubMed ID: 38691212 [No Abstract] [Full Text] [Related]
9. Evaluation of Three Feature Dimension Reduction Techniques for Machine Learning-Based Crop Yield Prediction Models. Pham HT; Awange J; Kuhn M Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081066 [TBL] [Abstract][Full Text] [Related]
10. Statistical and machine learning models for location-specific crop yield prediction using weather indices. S A; Debnath MK; R K Int J Biometeorol; 2024 Dec; 68(12):2453-2475. PubMed ID: 39215818 [TBL] [Abstract][Full Text] [Related]
11. Novel combination artificial neural network models could not outperform individual models for weather-based cashew yield prediction. Das B; Murgaonkar D; Navyashree S; Kumar P Int J Biometeorol; 2022 Aug; 66(8):1627-1638. PubMed ID: 35641796 [TBL] [Abstract][Full Text] [Related]
12. Occurrence prediction of pests and diseases in cotton on the basis of weather factors by long short term memory network. Xiao Q; Li W; Kai Y; Chen P; Zhang J; Wang B BMC Bioinformatics; 2019 Dec; 20(Suppl 25):688. PubMed ID: 31874611 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of weather parameter-based pre-harvest yield forecast models for wheat crop: a case study in Saurashtra region of Gujarat. Banakara KB; Sharma N; Sahoo S; Dubey SK; Chowdary VM Environ Monit Assess; 2022 Nov; 195(1):51. PubMed ID: 36316588 [TBL] [Abstract][Full Text] [Related]
14. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study. Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890 [No Abstract] [Full Text] [Related]
15. Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study. Sudarshan VK; Brabrand M; Range TM; Wiil UK Comput Biol Med; 2021 Aug; 135():104541. PubMed ID: 34166880 [TBL] [Abstract][Full Text] [Related]
16. Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. Zhao N; Charland K; Carabali M; Nsoesie EO; Maheu-Giroux M; Rees E; Yuan M; Garcia Balaguera C; Jaramillo Ramirez G; Zinszer K PLoS Negl Trop Dis; 2020 Sep; 14(9):e0008056. PubMed ID: 32970674 [TBL] [Abstract][Full Text] [Related]
17. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning. Jin W; Dong S; Yu C; Luo Q Comput Biol Med; 2022 Jul; 146():105560. PubMed ID: 35551008 [TBL] [Abstract][Full Text] [Related]
18. In-season weather data provide reliable yield estimates of maize and soybean in the US central Corn Belt. Joshi VR; Kazula MJ; Coulter JA; Naeve SL; Garcia Y Garcia A Int J Biometeorol; 2021 Apr; 65(4):489-502. PubMed ID: 33222025 [TBL] [Abstract][Full Text] [Related]
19. Short- and long-term weather prediction based on a hybrid of CEEMDAN, LMD, and ANN. Gyamerah SA; Owusu V PLoS One; 2024; 19(7):e0304754. PubMed ID: 39037990 [TBL] [Abstract][Full Text] [Related]
20. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases. de Oliveira Aparecido LE; de Souza Rolim G; da Silva Cabral De Moraes JR; Costa CTS; de Souza PS Int J Biometeorol; 2020 Apr; 64(4):671-688. PubMed ID: 31912306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]