BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38677172)

  • 1. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy.
    Khalilimeybodi A; Saucerman JJ; Rangamani P
    Comput Biol Med; 2024 Jun; 175():108499. PubMed ID: 38677172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy.
    Khalilimeybodi A; Riaz M; Campbell SG; Omens JH; McCulloch AD; Qyang Y; Saucerman JJ
    J Mol Cell Cardiol; 2023 Jan; 174():1-14. PubMed ID: 36370475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy.
    Riaz M; Park J; Sewanan LR; Ren Y; Schwan J; Das SK; Pomianowski PT; Huang Y; Ellis MW; Luo J; Liu J; Song L; Chen IP; Qiu C; Yazawa M; Tellides G; Hwa J; Young LH; Yang L; Marboe CC; Jacoby DL; Campbell SG; Qyang Y
    Circulation; 2022 Apr; 145(16):1238-1253. PubMed ID: 35384713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in molecular phenotype in mouse and human hypertrophic cardiomyopathy.
    Vakrou S; Liu Y; Zhu L; Greenland GV; Simsek B; Hebl VB; Guan Y; Woldemichael K; Talbot CC; Aon MA; Fukunaga R; Abraham MR
    Sci Rep; 2021 Jun; 11(1):13163. PubMed ID: 34162896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models.
    Vakrou S; Fukunaga R; Foster DB; Sorensen L; Liu Y; Guan Y; Woldemichael K; Pineda-Reyes R; Liu T; Tardiff JC; Leinwand LA; Tocchetti CG; Abraham TP; O'Rourke B; Aon MA; Abraham MR
    JCI Insight; 2018 Mar; 3(6):. PubMed ID: 29563334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca
    Sparrow AJ; Watkins H; Daniels MJ; Redwood C; Robinson P
    Am J Physiol Heart Circ Physiol; 2020 Mar; 318(3):H715-H722. PubMed ID: 32083971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes.
    Tanaka A; Yuasa S; Mearini G; Egashira T; Seki T; Kodaira M; Kusumoto D; Kuroda Y; Okata S; Suzuki T; Inohara T; Arimura T; Makino S; Kimura K; Kimura A; Furukawa T; Carrier L; Node K; Fukuda K
    J Am Heart Assoc; 2014 Nov; 3(6):e001263. PubMed ID: 25389285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deficient cMyBP-C protein expression during cardiomyocyte differentiation underlies human hypertrophic cardiomyopathy cellular phenotypes in disease specific human ES cell derived cardiomyocytes.
    Monteiro da Rocha A; Guerrero-Serna G; Helms A; Luzod C; Mironov S; Russell M; Jalife J; Day SM; Smith GD; Herron TJ
    J Mol Cell Cardiol; 2016 Oct; 99():197-206. PubMed ID: 27620334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diltiazem prevents stress-induced contractile deficits in cardiomyocytes, but does not reverse the cardiomyopathy phenotype in Mybpc3-knock-in mice.
    Flenner F; Geertz B; Reischmann-Düsener S; Weinberger F; Eschenhagen T; Carrier L; Friedrich FW
    J Physiol; 2017 Jun; 595(12):3987-3999. PubMed ID: 28090637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy.
    Toepfer CN; Garfinkel AC; Venturini G; Wakimoto H; Repetti G; Alamo L; Sharma A; Agarwal R; Ewoldt JK; Cloonan P; Letendre J; Lun M; Olivotto I; Colan S; Ashley E; Jacoby D; Michels M; Redwood CS; Watkins HC; Day SM; Staples JF; Padrón R; Chopra A; Ho CY; Chen CS; Pereira AC; Seidman JG; Seidman CE
    Circulation; 2020 Mar; 141(10):828-842. PubMed ID: 31983222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy.
    Zhang F; Zhou H; Xue J; Zhang Y; Zhou L; Leng J; Fang G; Liu Y; Wang Y; Liu H; Wu Y; Qi L; Duan R; He X; Wang Y; Liu Y; Li L; Yang J; Liang D; Chen YH
    Circ Res; 2024 Feb; 134(3):290-306. PubMed ID: 38197258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics.
    Bhagwan JR; Mosqueira D; Chairez-Cantu K; Mannhardt I; Bodbin SE; Bakar M; Smith JGW; Denning C
    J Mol Cell Cardiol; 2020 Aug; 145():43-53. PubMed ID: 32531470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular genetic basis for hypertrophic cardiomyopathy.
    Marian AJ; Roberts R
    J Mol Cell Cardiol; 2001 Apr; 33(4):655-70. PubMed ID: 11273720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research progress of the correlation between genotype and phenotype in hypertrophic cardiomyopathy.
    Shu T; Hu HC; Shen CJ; Lin SY; Chen XM
    Yi Chuan; 2022 Mar; 44(3):198-207. PubMed ID: 35307643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy.
    Coppini R; Santini L; Olivotto I; Ackerman MJ; Cerbai E
    Cardiovasc Res; 2020 Jul; 116(9):1585-1599. PubMed ID: 32365196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy.
    Friedrich FW; Wilding BR; Reischmann S; Crocini C; Lang P; Charron P; Müller OJ; McGrath MJ; Vollert I; Hansen A; Linke WA; Hengstenberg C; Bonne G; Morner S; Wichter T; Madeira H; Arbustini E; Eschenhagen T; Mitchell CA; Isnard R; Carrier L
    Hum Mol Genet; 2012 Jul; 21(14):3237-54. PubMed ID: 22523091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure.
    Tsoutsman T; Wang X; Garchow K; Riser B; Twigg S; Semsarian C
    J Mol Cell Cardiol; 2013 Sep; 62():164-78. PubMed ID: 23756156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction in human hypertrophic cardiomyopathy is linked to cardiomyocyte architecture disruption and corrected by improving NADH-driven mitochondrial respiration.
    Nollet EE; Duursma I; Rozenbaum A; Eggelbusch M; Wüst RCI; Schoonvelde SAC; Michels M; Jansen M; van der Wel NN; Bedi KC; Margulies KB; Nirschl J; Kuster DWD; van der Velden J
    Eur Heart J; 2023 Apr; 44(13):1170-1185. PubMed ID: 36734059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics.
    Tucholski T; Cai W; Gregorich ZR; Bayne EF; Mitchell SD; McIlwain SJ; de Lange WJ; Wrobbel M; Karp H; Hite Z; Vikhorev PG; Marston SB; Lal S; Li A; Dos Remedios C; Kohmoto T; Hermsen J; Ralphe JC; Kamp TJ; Moss RL; Ge Y
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24691-24700. PubMed ID: 32968017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation of the titin/MURF1 signaling complex is associated with hypertrophic cardiomyopathy in a fish model and in human patients.
    Higashikuse Y; Mittal N; Arimura T; Yoon SH; Oda M; Enomoto H; Kaneda R; Hattori F; Suzuki T; Kawakami A; Gasch A; Furukawa T; Labeit S; Fukuda K; Kimura A; Makino S
    Dis Model Mech; 2019 Nov; 12(11):. PubMed ID: 31628103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.