These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38677289)

  • 1. Constitutive activity of ionotropic glutamate receptors via hydrophobic substitutions in the ligand-binding domain.
    Seljeset S; Sintsova O; Wang Y; Harb HY; Lynagh T
    Structure; 2024 Jul; 32(7):966-978.e6. PubMed ID: 38677289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine agonism in ionotropic glutamate receptors.
    Stroebel D; Mony L; Paoletti P
    Neuropharmacology; 2021 Aug; 193():108631. PubMed ID: 34058193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.
    Kvist T; Greenwood JR; Hansen KB; Traynelis SF; Bräuner-Osborne H
    Neuropharmacology; 2013 Dec; 75():324-36. PubMed ID: 23973313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors.
    Alsaloum M; Kazi R; Gan Q; Amin J; Wollmuth LP
    J Neurosci; 2016 Mar; 36(9):2617-22. PubMed ID: 26937003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary trace analysis of ionotropic glutamate receptor sequences and modeling the interactions of agonists with different NMDA receptor subunits.
    Blaise MC; Sowdhamini R; Rao MR; Pradhan N
    J Mol Model; 2004 Dec; 10(5-6):305-16. PubMed ID: 15597199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate and Glycine Binding to the NMDA Receptor.
    Yu A; Lau AY
    Structure; 2018 Jul; 26(7):1035-1043.e2. PubMed ID: 29887499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors.
    Vance KM; Simorowski N; Traynelis SF; Furukawa H
    Nat Commun; 2011; 2():294. PubMed ID: 21522138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors.
    Hansen KB; Tajima N; Risgaard R; Perszyk RE; Jørgensen L; Vance KM; Ogden KK; Clausen RP; Furukawa H; Traynelis SF
    Mol Pharmacol; 2013 Jul; 84(1):114-27. PubMed ID: 23625947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening.
    Talukder I; Wollmuth LP
    J Gen Physiol; 2011 Aug; 138(2):179-94. PubMed ID: 21746848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteromerization of ligand binding domains of N-methyl-D-aspartate receptor requires both coagonists, L-glutamate and glycine.
    Cheriyan J; Mezes C; Zhou N; Balsara RD; Castellino FJ
    Biochemistry; 2015 Jan; 54(3):787-94. PubMed ID: 25544544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subunit-selective allosteric inhibition of glycine binding to NMDA receptors.
    Hansen KB; Ogden KK; Traynelis SF
    J Neurosci; 2012 May; 32(18):6197-208. PubMed ID: 22553026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular lock regulates binding of glycine to a primitive NMDA receptor.
    Yu A; Alberstein R; Thomas A; Zimmet A; Grey R; Mayer ML; Lau AY
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):E6786-E6795. PubMed ID: 27791085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desensitization of NMDA channels requires ligand binding to both GluN1 and GluN2 subunits to constrict the pore beside the activation gate.
    Chen YS; Tu YC; Lai YC; Liu E; Yang YC; Kuo CC
    J Neurochem; 2020 Jun; 153(5):549-566. PubMed ID: 31821563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation.
    Vyklicky V; Stanley C; Habrian C; Isacoff EY
    Nat Commun; 2021 May; 12(1):2694. PubMed ID: 33976221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrangement of subunits in functional NMDA receptors.
    Salussolia CL; Prodromou ML; Borker P; Wollmuth LP
    J Neurosci; 2011 Aug; 31(31):11295-304. PubMed ID: 21813689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors.
    Han L; Campanucci VA; Cooke J; Salter MW
    Mol Brain; 2013 Aug; 6():36. PubMed ID: 23941530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity.
    Hughes BA; Woodward JJ
    Neuropharmacology; 2016 Jun; 105():96-105. PubMed ID: 26577016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
    Lind GE; Mou TC; Tamborini L; Pomper MG; De Micheli C; Conti P; Pinto A; Hansen KB
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6942-E6951. PubMed ID: 28760974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening.
    Wells G; Yuan H; McDaniel MJ; Kusumoto H; Snyder JP; Liotta DC; Traynelis SF
    Proteins; 2018 Dec; 86(12):1265-1276. PubMed ID: 30168177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoenzymatic synthesis of new 2,4-syn-functionalized (S)-glutamate analogues and structure-activity relationship studies at ionotropic glutamate receptors and excitatory amino acid transporters.
    Assaf Z; Larsen AP; Venskutonytė R; Han L; Abrahamsen B; Nielsen B; Gajhede M; Kastrup JS; Jensen AA; Pickering DS; Frydenvang K; Gefflaut T; Bunch L
    J Med Chem; 2013 Feb; 56(4):1614-28. PubMed ID: 23414088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.