BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38677427)

  • 1. High-quality acrylic fibers from waste textiles.
    Mu B; Yu X; Shao Y; Yang Y
    Sci Total Environ; 2024 Jun; 931():172752. PubMed ID: 38677427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A triple-crosslinking strategy for high-performance regenerated cellulose fibers derived from waste cotton textiles.
    Huang Z; Tong A; Xing T; He A; Luo Y; Zhang Y; Wang M; Qiao S; Shi Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130779. PubMed ID: 38471604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Quality Cellulosic Fibers Engineered from Cotton-Elastane Textile Waste.
    Villar L; Schlapp-Hackl I; Sánchez PB; Hummel M
    Biomacromolecules; 2024 Mar; 25(3):1942-1949. PubMed ID: 38385297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis.
    Sanchis-Sebastiá M; Ruuth E; Stigsson L; Galbe M; Wallberg O
    Waste Manag; 2021 Feb; 121():248-254. PubMed ID: 33388647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers.
    Liu W; Liu S; Liu T; Liu T; Zhang J; Liu H
    Carbohydr Polym; 2019 Feb; 206():141-148. PubMed ID: 30553307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies of Recovery and Organic Recycling Used in Textile Waste Management.
    Wojnowska-Baryła I; Bernat K; Zaborowska M
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycled PET/PA6 Fibers from Waste Textile with Improved Hydrophilicity by In-Situ Reaction-Induced Capacity Enhancement.
    Luo LB; Chen R; Lian YX; Wu WJ; Zhang JH; Fu CX; Sun XL; Xiao LR
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current recycling strategies and high-value utilization of waste cotton.
    Lu L; Fan W; Meng X; Xue L; Ge S; Wang C; Foong SY; Tan CSY; Sonne C; Aghbashlo M; Tabatabaei M; Lam SS
    Sci Total Environ; 2023 Jan; 856(Pt 1):158798. PubMed ID: 36116663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers.
    Haslinger S; Hummel M; Anghelescu-Hakala A; Määttänen M; Sixta H
    Waste Manag; 2019 Sep; 97():88-96. PubMed ID: 31447031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles.
    Islam S; Bhat G
    J Environ Manage; 2019 Dec; 251():109536. PubMed ID: 31542622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties.
    Sharma K; Khilari V; Chaudhary BU; Jogi AB; Pandit AB; Kale RD
    Waste Manag; 2020 Apr; 107():227-234. PubMed ID: 32311640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in recycling and valorization of waste silk.
    Lu L; Fan W; Ge S; Liew RK; Shi Y; Dou H; Wang S; Lam SS
    Sci Total Environ; 2022 Jul; 830():154812. PubMed ID: 35341869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of Waste Cotton Textile Containing Elastane Fibers through Dissolution and Regeneration.
    Wang L; Huang S; Wang Y
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Textile Waste Fiber Regeneration via a Green Chemistry Approach: A Molecular Strategy for Sustainable Fashion.
    Sun X; Wang X; Sun F; Tian M; Qu L; Perry P; Owens H; Liu X
    Adv Mater; 2021 Dec; 33(48):e2105174. PubMed ID: 34561908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upcycling textile waste using pyrolysis process.
    Lee HS; Jung S; Lin KA; Kwon EE; Lee J
    Sci Total Environ; 2023 Feb; 859(Pt 2):160393. PubMed ID: 36423842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The supply and demand balance of recyclable textiles in the Nordic countries.
    Dukovska-Popovska I; Kjellsdotter Ivert L; Jónsdóttir H; Carin Dreyer H; Kaipia R
    Waste Manag; 2023 Mar; 159():154-162. PubMed ID: 36764240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Feasible Method Applied to One-Bath Process of Wool/Acrylic Blended Fabrics with Novel Heterocyclic Reactive Dyes and Application Properties of Dyed Textiles.
    Wang M; Wang X; Guo C; Zhao T; Li W
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32024144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of cellulose textile fibers.
    Mäkelä M; Rissanen M; Sixta H
    Analyst; 2021 Dec; 146(24):7503-7509. PubMed ID: 34766958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of used textiles for solid recovered fuel production.
    Dziok T; Bury M; Adamczak J; Palka J; Borovec K
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28835-28845. PubMed ID: 38592624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.