These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 38677488)

  • 1. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition.
    Gomez-Pinilla F; Thapak P
    Free Radic Biol Med; 2024 Aug; 220():43-55. PubMed ID: 38677488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical exercise as an epigenetic modulator of brain plasticity and cognition.
    Fernandes J; Arida RM; Gomez-Pinilla F
    Neurosci Biobehav Rev; 2017 Sep; 80():443-456. PubMed ID: 28666827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet and cognition: interplay between cell metabolism and neuronal plasticity.
    Gomez-Pinilla F; Tyagi E
    Curr Opin Clin Nutr Metab Care; 2013 Nov; 16(6):726-33. PubMed ID: 24071781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation of cognition: A circumscribed review of the field.
    Grigorenko EL; Kornilov SA; Naumova OY
    Dev Psychopathol; 2016 Nov; 28(4pt2):1285-1304. PubMed ID: 27691982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic codes in cognition and behaviour.
    Gräff J; Mansuy IM
    Behav Brain Res; 2008 Sep; 192(1):70-87. PubMed ID: 18353453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exercise and pharmacological inhibition of histone deacetylases (HDACs) on epigenetic regulations and gene expressions crucial for neuronal plasticity in the motor cortex.
    Maejima H; Kitahara M; Takamatsu Y; Mani H; Inoue T
    Brain Res; 2021 Jan; 1751():147191. PubMed ID: 33152341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revenge of the "sit": how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity.
    Vaynman S; Gomez-Pinilla F
    J Neurosci Res; 2006 Sep; 84(4):699-715. PubMed ID: 16862541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics and memory: Emerging role of histone lysine methyltransferase G9a/GLP complex as bidirectional regulator of synaptic plasticity.
    Pang KKL; Sharma M; Sajikumar S
    Neurobiol Learn Mem; 2019 Mar; 159():1-5. PubMed ID: 30703547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unlocking the Role of Exercise on CD4+ T Cell Plasticity.
    Goldsmith CD; Donovan T; Vlahovich N; Pyne DB
    Front Immunol; 2021; 12():729366. PubMed ID: 34759918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.
    Gomez-Pinilla F; Zhuang Y; Feng J; Ying Z; Fan G
    Eur J Neurosci; 2011 Feb; 33(3):383-90. PubMed ID: 21198979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics of memory and plasticity.
    Woldemichael BT; Bohacek J; Gapp K; Mansuy IM
    Prog Mol Biol Transl Sci; 2014; 122():305-40. PubMed ID: 24484706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex.
    Sui L; Wang Y; Ju LH; Chen M
    Neurobiol Learn Mem; 2012 May; 97(4):425-40. PubMed ID: 22469747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus.
    Kitahara M; Inoue T; Mani H; Takamatsu Y; Ikegami R; Tohyama H; Maejima H
    Neurosci Lett; 2021 Apr; 749():135749. PubMed ID: 33610667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Seq-ing" insights into the epigenetics of neuronal gene regulation.
    Telese F; Gamliel A; Skowronska-Krawczyk D; Garcia-Bassets I; Rosenfeld MG
    Neuron; 2013 Feb; 77(4):606-23. PubMed ID: 23439116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of chromatin repressive marks in cognition and disease: A focus on the repressive complex GLP/G9a.
    Benevento M; van de Molengraft M; van Westen R; van Bokhoven H; Kasri NN
    Neurobiol Learn Mem; 2015 Oct; 124():88-96. PubMed ID: 26143996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging animal and human models of exercise-induced brain plasticity.
    Voss MW; Vivar C; Kramer AF; van Praag H
    Trends Cogn Sci; 2013 Oct; 17(10):525-44. PubMed ID: 24029446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of gene expression and pain states by epigenetic mechanisms.
    Géranton SM; Tochiki KK
    Prog Mol Biol Transl Sci; 2015; 131():147-83. PubMed ID: 25744673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognition-Enhancing Vagus Nerve Stimulation Alters the Epigenetic Landscape.
    Sanders TH; Weiss J; Hogewood L; Chen L; Paton C; McMahan RL; Sweatt JD
    J Neurosci; 2019 May; 39(18):3454-3469. PubMed ID: 30804093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural plasticity and behavior - sixty years of conceptual advances.
    Sweatt JD
    J Neurochem; 2016 Oct; 139 Suppl 2():179-199. PubMed ID: 26875778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity.
    Guzman-Karlsson MC; Meadows JP; Gavin CF; Hablitz JJ; Sweatt JD
    Neuropharmacology; 2014 May; 80():3-17. PubMed ID: 24418102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.