These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 38677488)

  • 21. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders.
    Delgado-Morales R; Agís-Balboa RC; Esteller M; Berdasco M
    Clin Epigenetics; 2017; 9():67. PubMed ID: 28670349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of gene expression and pain states by epigenetic mechanisms.
    Géranton SM; Tochiki KK
    Prog Mol Biol Transl Sci; 2015; 131():147-83. PubMed ID: 25744673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cognition-Enhancing Vagus Nerve Stimulation Alters the Epigenetic Landscape.
    Sanders TH; Weiss J; Hogewood L; Chen L; Paton C; McMahan RL; Sweatt JD
    J Neurosci; 2019 May; 39(18):3454-3469. PubMed ID: 30804093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins.
    Liang J; Wang H; Zeng Y; Qu Y; Liu Q; Zhao F; Duan J; Jiang Y; Li S; Ying J; Li J; Mu D
    Rev Neurosci; 2021 Aug; 32(6):615-629. PubMed ID: 33583156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition.
    Gomez-Pinilla F; Vaynman S; Ying Z
    Eur J Neurosci; 2008 Dec; 28(11):2278-87. PubMed ID: 19046371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanisms of experience-dependent structural and functional plasticity in the brain.
    Kondo M
    Anat Sci Int; 2017 Jan; 92(1):1-17. PubMed ID: 27484433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins.
    Vaynman S; Gomez-Pinilla F
    Neurorehabil Neural Repair; 2005 Dec; 19(4):283-95. PubMed ID: 16263961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of reelin in adult synaptic function and the genetic and epigenetic regulation of the reelin gene.
    Levenson JM; Qiu S; Weeber EJ
    Biochim Biophys Acta; 2008 Aug; 1779(8):422-31. PubMed ID: 18237558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampal gene expression patterns linked to late-life physical activity oppose age and AD-related transcriptional decline.
    Berchtold NC; Prieto GA; Phelan M; Gillen DL; Baldi P; Bennett DA; Buchman AS; Cotman CW
    Neurobiol Aging; 2019 Jun; 78():142-154. PubMed ID: 30927700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetics and memory: Emerging role of histone lysine methyltransferase G9a/GLP complex as bidirectional regulator of synaptic plasticity.
    Pang KKL; Sharma M; Sajikumar S
    Neurobiol Learn Mem; 2019 Mar; 159():1-5. PubMed ID: 30703547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity.
    Bai I; Keyser C; Zhang Z; Rosolia B; Hwang JY; Zukin RS; Yan J
    Front Immunol; 2024; 15():1322842. PubMed ID: 38455054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. "Seq-ing" insights into the epigenetics of neuronal gene regulation.
    Telese F; Gamliel A; Skowronska-Krawczyk D; Garcia-Bassets I; Rosenfeld MG
    Neuron; 2013 Feb; 77(4):606-23. PubMed ID: 23439116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of chromatin repressive marks in cognition and disease: A focus on the repressive complex GLP/G9a.
    Benevento M; van de Molengraft M; van Westen R; van Bokhoven H; Kasri NN
    Neurobiol Learn Mem; 2015 Oct; 124():88-96. PubMed ID: 26143996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridging animal and human models of exercise-induced brain plasticity.
    Voss MW; Vivar C; Kramer AF; van Praag H
    Trends Cogn Sci; 2013 Oct; 17(10):525-44. PubMed ID: 24029446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance.
    Raefsky SM; Mattson MP
    Free Radic Biol Med; 2017 Jan; 102():203-216. PubMed ID: 27908782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity.
    Guzman-Karlsson MC; Meadows JP; Gavin CF; Hablitz JJ; Sweatt JD
    Neuropharmacology; 2014 May; 80():3-17. PubMed ID: 24418102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.
    Sharples AP; Stewart CE; Seaborne RA
    Aging Cell; 2016 Aug; 15(4):603-16. PubMed ID: 27102569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity.
    Yin F; Yao J; Sancheti H; Feng T; Melcangi RC; Morgan TE; Finch CE; Pike CJ; Mack WJ; Cadenas E; Brinton RD
    Neurobiol Aging; 2015 Jul; 36(7):2282-2295. PubMed ID: 25921624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity.
    Dunn AR; Kaczorowski CC
    Neurobiol Learn Mem; 2019 Oct; 164():107069. PubMed ID: 31442579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory.
    Rahn EJ; Guzman-Karlsson MC; David Sweatt J
    Neurobiol Learn Mem; 2013 Oct; 105():133-50. PubMed ID: 23796633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.