BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38678014)

  • 21. Physiologic Patient Derived 3D Spheroids for Anti-neoplastic Drug Screening to Target Cancer Stem Cells.
    Bregenzer ME; Davis C; Horst EN; Mehta P; Novak CM; Raghavan S; Snyder CS; Mehta G
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31329171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximizing the Value of Cancer Drug Screening in Multicellular Tumor Spheroid Cultures: A Case Study in Five Head and Neck Squamous Cell Carcinoma Cell Lines.
    Kochanek SJ; Close DA; Camarco DP; Johnston PA
    SLAS Discov; 2020 Apr; 25(4):329-349. PubMed ID: 31983262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel antiangiogenic drugs for the management of breast cancer: new approaches for an old issue?
    Bozza C; Fontanella C; Buoro V; Mansutti M; Aprile G
    Expert Rev Clin Pharmacol; 2015 Mar; 8(2):251-65. PubMed ID: 25597501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pancreatic Microtumors: A Novel 3D Ex Vivo Testing Platform.
    Goodwin ML; Urs SK; Simeone DM
    Methods Mol Biol; 2019; 1882():73-80. PubMed ID: 30378045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of patient-derived organotypic tumor spheroid models for tumor microenvironment modeling.
    Hong HK; Yun NH; Jeong YL; Park J; Doh J; Lee WY; Cho YB
    Cancer Med; 2021 Aug; 10(16):5589-5598. PubMed ID: 34240815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of a Desmoplastic Tumor Microenvironment for Colon Cancer Drug Sensitivity: A Study with 3D Chimeric Tumor Spheroids.
    Goudar VS; Koduri MP; Ta YN; Chen Y; Chu LA; Lu LS; Tseng FG
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48478-48491. PubMed ID: 34633791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional culture models to study drug resistance in breast cancer.
    Fisher MF; Rao SS
    Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis.
    Correa de Sampaio P; Auslaender D; Krubasik D; Failla AV; Skepper JN; Murphy G; English WR
    PLoS One; 2012; 7(2):e30753. PubMed ID: 22363483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular communication promotes mammosphere growth and collective invasion through microtubule‑like structures and angiogenesis.
    Huang S; Yuan N; Wang G; Wu F; Feng L; Luo M; Li M; Luo A; Zhao X; Zhang L
    Oncol Rep; 2018 Dec; 40(6):3297-3312. PubMed ID: 30542711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis.
    Ko J; Ahn J; Kim S; Lee Y; Lee J; Park D; Jeon NL
    Lab Chip; 2019 Sep; 19(17):2822-2833. PubMed ID: 31360969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antiangiogenic cancer drug using the zebrafish model.
    Santoro MM
    Arterioscler Thromb Vasc Biol; 2014 Sep; 34(9):1846-53. PubMed ID: 24903092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High resolution volumetric imaging of primary and secondary tumor spheroids using multi-angle Light Sheet Fluorescence Microscopy (LSFM).
    Psycharakis SE; Liapis E; Zacharopoulos A; Oraiopoulou ME; Papamatheakis J; Sakkalis V; Zacharakis G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():866-869. PubMed ID: 30440528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment.
    Narise K; Okuda K; Enomoto Y; Hirayama T; Nagasawa H
    Drug Des Devel Ther; 2014; 8():701-17. PubMed ID: 24944508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor-targeted delivery of silibinin and IPI-549 synergistically inhibit breast cancer by remodeling the microenvironment.
    Jiang M; He K; Qiu T; Sun J; Liu Q; Zhang X; Zheng H
    Int J Pharm; 2020 May; 581():119239. PubMed ID: 32194211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robotic printing and drug testing of 384-well tumor spheroids.
    Ham SL; Thakuri PS; Tavana H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2183-6. PubMed ID: 26736723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.
    Ekert JE; Johnson K; Strake B; Pardinas J; Jarantow S; Perkinson R; Colter DC
    PLoS One; 2014; 9(3):e92248. PubMed ID: 24638075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic.
    Dzobo K
    OMICS; 2020 Apr; 24(4):175-179. PubMed ID: 32176591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.