These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38678066)

  • 1. Predicting postoperative rehemorrhage in hypertensive intracerebral hemorrhage using noncontrast CT radiomics and clinical data with an interpretable machine learning approach.
    Wang W; Dai J; Li J; Du X
    Sci Rep; 2024 Apr; 14(1):9717. PubMed ID: 38678066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning.
    Xu X; Zhang J; Yang K; Wang Q; Chen X; Xu B
    Brain Behav; 2021 May; 11(5):e02085. PubMed ID: 33624945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretable machine learning models based on shear-wave elastography radiomics for predicting cardiovascular disease in diabetic kidney disease patients.
    Dai R; Sun M; Lu M; Deng L
    J Diabetes Investig; 2024 Nov; 15(11):1637-1650. PubMed ID: 39171653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Nomogram Based on CT Radiomics and Clinical Risk Factors for Prediction of Prognosis of Hypertensive Intracerebral Hemorrhage.
    Fang C; An X; Li K; Zhang J; Shang H; Jiao T; Zeng Q
    Comput Intell Neurosci; 2022; 2022():9751988. PubMed ID: 36531926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of early hematoma expansion of spontaneous intracerebral hemorrhage based on deep learning radiomics features of noncontrast computed tomography.
    Feng C; Ding Z; Lao Q; Zhen T; Ruan M; Han J; He L; Shen Q
    Eur Radiol; 2024 May; 34(5):2908-2920. PubMed ID: 37938384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage.
    Geng Z; Yang C; Zhao Z; Yan Y; Guo T; Liu C; Wu A; Wu X; Wei L; Tian Y; Hu P; Wang K
    J Transl Med; 2024 Mar; 22(1):236. PubMed ID: 38439097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study.
    Zhang H; Yang YF; Song XL; Hu HJ; Yang YY; Zhu X; Yang C
    BMC Med Imaging; 2024 Jul; 24(1):170. PubMed ID: 38982357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Interpretable Machine Learning Models Based on Ultrasonic Radiomics for Predicting the Risk of Fibrosis Progression in Diabetic Patients with Nonalcoholic Fatty Liver Disease.
    Meng F; Wu Q; Zhang W; Hou S
    Diabetes Metab Syndr Obes; 2023; 16():3901-3913. PubMed ID: 38077485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage.
    Song Z; Guo D; Tang Z; Liu H; Li X; Luo S; Yao X; Song W; Song J; Zhou Z
    Korean J Radiol; 2021 Mar; 22(3):415-424. PubMed ID: 33169546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research advances in predicting the expansion of hypertensive intracerebral hemorrhage based on CT images: an overview.
    Ai M; Zhang H; Feng J; Chen H; Liu D; Li C; Yu F; Li C
    PeerJ; 2024; 12():e17556. PubMed ID: 38860211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Radiomics Model Based on CT Images Combined with Multiple Machine Learning Models to Predict the Prognosis of Spontaneous Intracerebral Hemorrhage.
    Pei L; Fang T; Xu L; Ni C
    World Neurosurg; 2024 Jan; 181():e856-e866. PubMed ID: 37931880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features.
    Wang J; Gao W; Lu M; Yao X; Yang D
    Front Oncol; 2023; 13():1290313. PubMed ID: 38044998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Clinical-Radiomics Features With Machine Learning Methods for Building Models to Predict Postoperative Recurrence in Patients With Chronic Subdural Hematoma: Retrospective Cohort Study.
    Fang C; Ji X; Pan Y; Xie G; Zhang H; Li S; Wan J
    J Med Internet Res; 2024 Aug; 26():e54944. PubMed ID: 39197165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT radiomics combined with clinical and radiological factors predict hematoma expansion in hypertensive intracerebral hemorrhage.
    Yu F; Yang M; He C; Yang Y; Peng Y; Yang H; Lu H; Liu H
    Eur Radiol; 2025 Jan; 35(1):6-19. PubMed ID: 38990325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study.
    Liu Z; Luo C; Chen X; Feng Y; Feng J; Zhang R; Ouyang F; Li X; Tan Z; Deng L; Chen Y; Cai Z; Zhang X; Liu J; Liu W; Guo B; Hu Q
    Int J Surg; 2024 Feb; 110(2):1039-1051. PubMed ID: 37924497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage.
    Li YL; Chen C; Zhang LJ; Zheng YN; Lv XN; Zhao LB; Li Q; Lv FJ
    World Neurosurg; 2023 Jul; 175():e264-e270. PubMed ID: 36958717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model.
    Xie H; Ma S; Wang X; Zhang X
    Eur Radiol; 2020 Jan; 30(1):87-98. PubMed ID: 31385050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening.
    Bülbül HM; Burakgazi G; Kesimal U; Kaba E
    Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-contrast CT radiomics and machine learning for outcomes prediction of patients with acute ischemic stroke receiving conventional treatment.
    Zhang L; Wu J; Yu R; Xu R; Yang J; Fan Q; Wang D; Zhang W
    Eur J Radiol; 2023 Aug; 165():110959. PubMed ID: 37437435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of a grading diagnostic model for schistosomiasis-induced liver fibrosis based on radiomics and clinical laboratory indicators].
    Guo Z; Shao J; Zou X; Zhao Q; Qian P; Wang W; Huang L; Xue J; Xu J; Yang K; Zhou X; Li S
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2024 Jun; 36(3):251-258. PubMed ID: 38952311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.