BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 38678389)

  • 21. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics.
    Rahimi A; Vale-Silva LA; Fälth Savitski M; Tanevski J; Saez-Rodriguez J
    Nat Commun; 2024 Jun; 15(1):4994. PubMed ID: 38862466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST.
    Liu W; Liao X; Luo Z; Yang Y; Lau MC; Jiao Y; Shi X; Zhai W; Ji H; Yeong J; Liu J
    Nat Commun; 2023 Jan; 14(1):296. PubMed ID: 36653349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics.
    Zhong C; Tian T; Wei Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37944045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. scWECTA: A weighted ensemble classification framework for cell type assignment based on single cell transcriptome.
    Ren T; Huang S; Liu Q; Wang G
    Comput Biol Med; 2023 Jan; 152():106409. PubMed ID: 36512878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell segmentation-free inference of cell types from in situ transcriptomics data.
    Park J; Choi W; Tiesmeyer S; Long B; Borm LE; Garren E; Nguyen TN; Tasic B; Codeluppi S; Graf T; Schlesner M; Stegle O; Eils R; Ishaque N
    Nat Commun; 2021 Jun; 12(1):3545. PubMed ID: 34112806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating multiple variability in spatially resolved transcriptomics with scCube.
    Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y
    Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data.
    Wang H; Liu Z; Ma X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3134-3145. PubMed ID: 38709615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SMaSH: a scalable, general marker gene identification framework for single-cell RNA-sequencing.
    Nelson ME; Riva SG; Cvejic A
    BMC Bioinformatics; 2022 Aug; 23(1):328. PubMed ID: 35941549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scEMAIL: Universal and Source-free Annotation Method for scRNA-seq Data with Novel Cell-type Perception.
    Wan H; Chen L; Deng M
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):939-958. PubMed ID: 36608843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TENET: Triple-enhancement based graph neural network for cell-cell interaction network reconstruction from spatial transcriptomics.
    Lee Y; Xu Y; Gao P; Chen J
    J Mol Biol; 2024 May; 436(9):168543. PubMed ID: 38508302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MARS: discovering novel cell types across heterogeneous single-cell experiments.
    Brbić M; Zitnik M; Wang S; Pisco AO; Altman RB; Darmanis S; Leskovec J
    Nat Methods; 2020 Dec; 17(12):1200-1206. PubMed ID: 33077966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.