These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38678749)

  • 1. Studying the nonlinear response of incompressible hyperelastic thin circular cylindrical shells with geometric imperfections.
    Arani MS; Bakhtiari M; Toorani M; Lakis AA
    J Mech Behav Biomed Mater; 2024 Jul; 155():106562. PubMed ID: 38678749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of the Effects of Geometric Imperfections on the Nonlinear Static and Dynamic Behavior of Capacitive Micomachined Ultrasonic Transducers.
    Jallouli A; Kacem N; Lardies J
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30400616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.
    Hosseinzadeh M; Ghoreishi M; Narooei K
    J Mech Behav Biomed Mater; 2016 Jun; 59():393-403. PubMed ID: 26953961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Stability of Natural-Fiber-Reinforced Composite Cylindrical Shells with Initial Geometric Imperfection Considering Moisture Absorption and Hygrothermal Aging.
    Zhang H; Bai H; Zuo Z
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model.
    Faghihi S; Karimi A; Jamadi M; Imani R; Salarian R
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():299-305. PubMed ID: 24656382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unified three-dimensional finite elements for large strain analysis of compressible and nearly incompressible solids.
    Pagani A; Chiaia P; Filippi M; Cinefra M
    Mech Adv Mat Struct; 2024; 31(1):117-137. PubMed ID: 38235485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of blood clots based on the nonlinear visco-hyperelastic model.
    Tashiro K; Shobayashi Y; Ota I; Hotta A
    Biophys J; 2021 Oct; 120(20):4547-4556. PubMed ID: 34478700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buckling of Thin-Walled Cylinders from Three Dimensional Nonlinear Elasticity.
    Springhetti R; Rossetto G; Bigoni D
    J Elast; 2023; 154(1-4):297-323. PubMed ID: 37920151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues.
    Seshaiyer P; Humphrey JD
    J Biomech Eng; 2003 Jun; 125(3):363-71. PubMed ID: 12929241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperelastic Ex Vivo Cervical Tissue Mechanical Characterization.
    Callejas A; Melchor J; Faris IH; Rus G
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonlinear dynamic finite element approach for simulating muscular hydrostats.
    Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weakly nonlinear acoustic wave propagation in a nonlinear orthotropic circular cylindrical waveguide.
    Prakash VS; Sonti VR
    J Acoust Soc Am; 2015 Nov; 138(5):3231-44. PubMed ID: 26627797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.