These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38678749)
41. Finite Bending of Fiber-Reinforced Visco-Hyperelastic Material: Analytical Approach and FEM. Pashazadeh J; Ostadrahimi A; Baghani M; Choi E Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203859 [TBL] [Abstract][Full Text] [Related]
42. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models. Sun Y; Chen L; Yick KL; Yu W; Lau N; Jiao W J Mech Behav Biomed Mater; 2019 Feb; 90():615-625. PubMed ID: 30500699 [TBL] [Abstract][Full Text] [Related]
43. Nonlinear finite-element analysis of nanoindentation of viral capsids. Gibbons MM; Klug WS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031901. PubMed ID: 17500720 [TBL] [Abstract][Full Text] [Related]
44. Vibration of symmetrically layered angle-ply cylindrical shells filled with fluid. Mat Daud NI; Viswanathan KK PLoS One; 2019; 14(7):e0219089. PubMed ID: 31269073 [TBL] [Abstract][Full Text] [Related]
45. Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling. Sasson A; Patchornik S; Eliasy R; Robinson D; Haj-Ali R J Mech Behav Biomed Mater; 2012 Apr; 8():143-53. PubMed ID: 22402161 [TBL] [Abstract][Full Text] [Related]
46. Nonlinear dynamics of spherical shells buckling under step pressure. Sieber J; Hutchinson JW; Thompson JMT Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180884. PubMed ID: 31007559 [TBL] [Abstract][Full Text] [Related]
47. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue. Thorvaldsen T; Osnes H; Sundnes J Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874 [TBL] [Abstract][Full Text] [Related]
48. Optimization of nonlinear hyperelastic coefficients for foot tissues using a magnetic resonance imaging deformation experiment. Petre M; Erdemir A; Panoskaltsis VP; Spirka TA; Cavanagh PR J Biomech Eng; 2013 Jun; 135(6):61001-12. PubMed ID: 23699713 [TBL] [Abstract][Full Text] [Related]
49. Wrinkles and creases in the bending, unbending and eversion of soft sectors. Sigaeva T; Mangan R; Vergori L; Destrade M; Sudak L Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170827. PubMed ID: 29740258 [TBL] [Abstract][Full Text] [Related]
50. A nonlinear viscoelastic finite element model of polyethylene. Chen PC; Colwell CW; D'Lima DD Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414 [TBL] [Abstract][Full Text] [Related]
51. Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Zhang MG; Cao YP; Li GY; Feng XQ Biomech Model Mechanobiol; 2014 Jan; 13(1):1-11. PubMed ID: 23483348 [TBL] [Abstract][Full Text] [Related]
52. Shallow shell theory of the buckling energy barrier: From the Pogorelov state to softening and imperfection sensitivity close to the buckling pressure. Baumgarten L; Kierfeld J Phys Rev E; 2019 Feb; 99(2-1):022803. PubMed ID: 30934269 [TBL] [Abstract][Full Text] [Related]
53. The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart. Hassan MA; Hamdi M; Noma A J Mech Behav Biomed Mater; 2012 Jan; 5(1):99-109. PubMed ID: 22100084 [TBL] [Abstract][Full Text] [Related]
54. Prospects of implant with locking plate in fixation of subtrochanteric fracture: experimental demonstration of its potential benefits on synthetic femur model with supportive hierarchical nonlinear hyperelastic finite element analysis. Latifi MH; Ganthel K; Rukmanikanthan S; Mansor A; Kamarul T; Bilgen M Biomed Eng Online; 2012 Apr; 11():23. PubMed ID: 22545650 [TBL] [Abstract][Full Text] [Related]
55. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation. Voyiadjis GZ; Samadi-Dooki A J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774 [TBL] [Abstract][Full Text] [Related]
56. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. Sun W; Chaikof EL; Levenston ME J Biomech Eng; 2008 Dec; 130(6):061003. PubMed ID: 19045532 [TBL] [Abstract][Full Text] [Related]
57. A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges. Noël C Med Eng Phys; 2018 Nov; 61():41-50. PubMed ID: 30262138 [TBL] [Abstract][Full Text] [Related]
58. Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model. San-Vicente G; Aguinaga I; Tomás Celigüeta J IEEE Trans Vis Comput Graph; 2012 Feb; 18(2):228-41. PubMed ID: 22156291 [TBL] [Abstract][Full Text] [Related]
59. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS. Vande Geest JP; Simon BR; Rigby PH; Newberg TP J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686 [TBL] [Abstract][Full Text] [Related]
60. Non-linear material models for tracheal smooth muscle tissue. Sarma PA; Pidaparti RM; Moulik PN; Meiss RA Biomed Mater Eng; 2003; 13(3):235-45. PubMed ID: 12883173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]