These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38678827)
1. PII-like signaling proteins: a new paradigm in orchestrating cellular homeostasis. Selim KA; Alva V Curr Opin Microbiol; 2024 Jun; 79():102453. PubMed ID: 38678827 [TBL] [Abstract][Full Text] [Related]
2. Carbon signaling protein SbtB possesses atypical redox-regulated apyrase activity to facilitate regulation of bicarbonate transporter SbtA. Selim KA; Haffner M; Mantovani O; Albrecht R; Zhu H; Hagemann M; Forchhammer K; Hartmann MD Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2205882120. PubMed ID: 36800386 [TBL] [Abstract][Full Text] [Related]
3. New views on PII signaling: from nitrogen sensing to global metabolic control. Forchhammer K; Selim KA; Huergo LF Trends Microbiol; 2022 Aug; 30(8):722-735. PubMed ID: 35067429 [TBL] [Abstract][Full Text] [Related]
4. P Selim KA; Haase F; Hartmann MD; Hagemann M; Forchhammer K Proc Natl Acad Sci U S A; 2018 May; 115(21):E4861-E4869. PubMed ID: 29735650 [TBL] [Abstract][Full Text] [Related]
6. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Huergo LF; Pedrosa FO; Muller-Santos M; Chubatsu LS; Monteiro RA; Merrick M; Souza EM Microbiology (Reading); 2012 Jan; 158(Pt 1):176-190. PubMed ID: 22210804 [TBL] [Abstract][Full Text] [Related]
7. Carbon/nitrogen homeostasis control in cyanobacteria. Forchhammer K; Selim KA FEMS Microbiol Rev; 2020 Jan; 44(1):33-53. PubMed ID: 31617886 [TBL] [Abstract][Full Text] [Related]
8. The role of effector molecules in signal transduction by PII proteins. Radchenko M; Merrick M Biochem Soc Trans; 2011 Jan; 39(1):189-94. PubMed ID: 21265771 [TBL] [Abstract][Full Text] [Related]
9. Sensory properties of the PII signalling protein family. Forchhammer K; Lüddecke J FEBS J; 2016 Feb; 283(3):425-37. PubMed ID: 26527104 [TBL] [Abstract][Full Text] [Related]
10. Energy drives the dynamic localization of cyanobacterial nitrogen regulators during diurnal cycles. Espinosa J; Labella JI; Cantos R; Contreras A Environ Microbiol; 2018 Mar; 20(3):1240-1252. PubMed ID: 29441670 [TBL] [Abstract][Full Text] [Related]
11. Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Teixeira PF; Jonsson A; Frank M; Wang H; Nordlund S Microbiology (Reading); 2008 Aug; 154(Pt 8):2336-2347. PubMed ID: 18667566 [TBL] [Abstract][Full Text] [Related]
12. Tuning the in vitro sensing and signaling properties of cyanobacterial PII protein by mutation of key residues. Selim KA; Haffner M; Watzer B; Forchhammer K Sci Rep; 2019 Dec; 9(1):18985. PubMed ID: 31831819 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of adenylylated and unadenylylated P Grau FC; Burkovski A; Muller YA Acta Crystallogr D Struct Biol; 2021 Mar; 77(Pt 3):325-335. PubMed ID: 33645536 [TBL] [Abstract][Full Text] [Related]
14. PII, the key regulator of nitrogen metabolism in the cyanobacteria. Zhang Y; Zhao J Sci China C Life Sci; 2008 Dec; 51(12):1056-65. PubMed ID: 19093078 [TBL] [Abstract][Full Text] [Related]
15. From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom. Selim KA; Ermilova E; Forchhammer K New Phytol; 2020 Aug; 227(3):722-731. PubMed ID: 32077495 [TBL] [Abstract][Full Text] [Related]
16. Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Jiang P; Ninfa AJ Biochemistry; 2007 Nov; 46(45):12979-96. PubMed ID: 17939683 [TBL] [Abstract][Full Text] [Related]
17. The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and Chloroplastida PII proteins. Lapina T; Selim KA; Forchhammer K; Ermilova E Sci Rep; 2018 Jan; 8(1):790. PubMed ID: 29335634 [TBL] [Abstract][Full Text] [Related]
18. Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. Lüddecke J; Forchhammer K PLoS One; 2015; 10(8):e0137114. PubMed ID: 26317540 [TBL] [Abstract][Full Text] [Related]
19. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation. Lüddecke J; Forchhammer K PLoS One; 2013; 8(12):e83181. PubMed ID: 24349456 [TBL] [Abstract][Full Text] [Related]
20. Phosphoenolpyruvate carboxylase from the cyanobacterium Synechocystis sp. PCC 6803 is under global metabolic control by P Scholl J; Dengler L; Bader L; Forchhammer K Mol Microbiol; 2020 Aug; 114(2):292-307. PubMed ID: 32274833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]