These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 38678959)
1. Lesion attention guided neural network for contrast-enhanced mammography-based biomarker status prediction in breast cancer. Qian N; Jiang W; Wu X; Zhang N; Yu H; Guo Y Comput Methods Programs Biomed; 2024 Jun; 250():108194. PubMed ID: 38678959 [TBL] [Abstract][Full Text] [Related]
2. Breast cancer diagnosis from contrast-enhanced mammography using multi-feature fusion neural network. Qian N; Jiang W; Guo Y; Zhu J; Qiu J; Yu H; Huang X Eur Radiol; 2024 Feb; 34(2):917-927. PubMed ID: 37610440 [TBL] [Abstract][Full Text] [Related]
3. Classification of contrast-enhanced spectral mammography (CESM) images. Perek S; Kiryati N; Zimmerman-Moreno G; Sklair-Levy M; Konen E; Mayer A Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):249-257. PubMed ID: 30367322 [TBL] [Abstract][Full Text] [Related]
4. Identifying radiogenomic associations of breast cancer based on DCE-MRI by using Siamese Neural Network with manufacturer bias normalization. Chen J; Zeng H; Cheng Y; Yang B Med Phys; 2024 Oct; 51(10):7269-7281. PubMed ID: 38922986 [TBL] [Abstract][Full Text] [Related]
5. Contrast-Enhanced Mammography and Radiomics Analysis for Noninvasive Breast Cancer Characterization: Initial Results. Marino MA; Pinker K; Leithner D; Sung J; Avendano D; Morris EA; Jochelson M Mol Imaging Biol; 2020 Jun; 22(3):780-787. PubMed ID: 31463822 [TBL] [Abstract][Full Text] [Related]
6. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks. Bandeira Diniz JO; Bandeira Diniz PH; Azevedo Valente TL; Corrêa Silva A; de Paiva AC; Gattass M Comput Methods Programs Biomed; 2018 Mar; 156():191-207. PubMed ID: 29428071 [TBL] [Abstract][Full Text] [Related]
7. Contrast-Enhanced Mammography Radiomics Analysis for Preoperative Prediction of Breast Cancer Molecular Subtypes. Zhu S; Wang S; Guo S; Wu R; Zhang J; Kong M; Pan L; Gu Y; Yu S Acad Radiol; 2024 Jun; 31(6):2228-2238. PubMed ID: 38142176 [TBL] [Abstract][Full Text] [Related]
8. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography. Mendel K; Li H; Sheth D; Giger M Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083 [TBL] [Abstract][Full Text] [Related]
9. Deep-learning model for background parenchymal enhancement classification in contrast-enhanced mammography. Ripaud E; Jailin C; Quintana GI; Milioni de Carvalho P; Sanchez de la Rosa R; Vancamberg L Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657641 [No Abstract] [Full Text] [Related]
10. Deep feature-based automatic classification of mammograms. Arora R; Rai PK; Raman B Med Biol Eng Comput; 2020 Jun; 58(6):1199-1211. PubMed ID: 32200453 [TBL] [Abstract][Full Text] [Related]
11. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Kooi T; van Ginneken B; Karssemeijer N; den Heeten A Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850 [TBL] [Abstract][Full Text] [Related]
12. Representation learning for mammography mass lesion classification with convolutional neural networks. Arevalo J; González FA; Ramos-Pollán R; Oliveira JL; Guevara Lopez MA Comput Methods Programs Biomed; 2016 Apr; 127():248-57. PubMed ID: 26826901 [TBL] [Abstract][Full Text] [Related]
13. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Zhang E; Seiler S; Chen M; Lu W; Gu X Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605 [TBL] [Abstract][Full Text] [Related]
14. CTG-Net: Cross-task guided network for breast ultrasound diagnosis. Yang K; Suzuki A; Ye J; Nosato H; Izumori A; Sakanashi H PLoS One; 2022; 17(8):e0271106. PubMed ID: 35951606 [TBL] [Abstract][Full Text] [Related]
15. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. Zhou J; Luo LY; Dou Q; Chen H; Chen C; Li GJ; Jiang ZF; Heng PA J Magn Reson Imaging; 2019 Oct; 50(4):1144-1151. PubMed ID: 30924997 [TBL] [Abstract][Full Text] [Related]
16. Weakly Supervised Breast Lesion Detection in Dynamic Contrast-Enhanced MRI. Sun R; Wei C; Jiang Z; Huang G; Xie Y; Nie S J Digit Imaging; 2023 Aug; 36(4):1553-1564. PubMed ID: 37253896 [TBL] [Abstract][Full Text] [Related]
17. Transformer guided self-adaptive network for multi-scale skin lesion image segmentation. Xin C; Liu Z; Ma Y; Wang D; Zhang J; Li L; Zhou Q; Xu S; Zhang Y Comput Biol Med; 2024 Feb; 169():107846. PubMed ID: 38184865 [TBL] [Abstract][Full Text] [Related]
18. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study. Patel BK; Ranjbar S; Wu T; Pockaj BA; Li J; Zhang N; Lobbes M; Zhang B; Mitchell JR Eur J Radiol; 2018 Jan; 98():207-213. PubMed ID: 29279165 [TBL] [Abstract][Full Text] [Related]
20. Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score. Ha R; Chang P; Mutasa S; Karcich J; Goodman S; Blum E; Kalinsky K; Liu MZ; Jambawalikar S J Magn Reson Imaging; 2019 Feb; 49(2):518-524. PubMed ID: 30129697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]