These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38678959)

  • 21. Peri-lesion regions in differentiating suspicious breast calcification-only lesions specifically on contrast enhanced mammography.
    Cao K; Gao F; Long R; Zhang FD; Huang CC; Cao M; Yu YZ; Sun YS
    J Xray Sci Technol; 2024; 32(3):583-596. PubMed ID: 38306089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset.
    Sawyer Lee R; Dunnmon JA; He A; Tang S; Ré C; Rubin DL
    J Biomed Inform; 2021 Jan; 113():103656. PubMed ID: 33309994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multireader comparison of contrast-enhanced mammography versus the combination of digital mammography and digital breast tomosynthesis in the preoperative assessment of breast cancer.
    Girometti R; Linda A; Conte P; Lorenzon M; De Serio I; Jerman K; Londero V; Zuiani C
    Radiol Med; 2021 Nov; 126(11):1407-1414. PubMed ID: 34302599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TS-GCN: A novel tumor segmentation method integrating transformer and GCN.
    Song H; Liu C; Li S; Zhang P
    Math Biosci Eng; 2023 Sep; 20(10):18173-18190. PubMed ID: 38052553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network.
    Alom MZ; Yakopcic C; Nasrin MS; Taha TM; Asari VK
    J Digit Imaging; 2019 Aug; 32(4):605-617. PubMed ID: 30756265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach.
    Mahmood T; Li J; Pei Y; Akhtar F; Rehman MU; Wasti SH
    PLoS One; 2022; 17(1):e0263126. PubMed ID: 35085352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization.
    Shen Y; Wu N; Phang J; Park J; Liu K; Tyagi S; Heacock L; Kim SG; Moy L; Cho K; Geras KJ
    Med Image Anal; 2021 Feb; 68():101908. PubMed ID: 33383334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DBT Masses Automatic Segmentation Using U-Net Neural Networks.
    Lai X; Yang W; Li R
    Comput Math Methods Med; 2020; 2020():7156165. PubMed ID: 32411285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Convolutional Neural Networks for Enhanced Capture of Breast Parenchymal Complexity Patterns Associated with Breast Cancer Risk.
    Gastounioti A; Oustimov A; Hsieh MK; Pantalone L; Conant EF; Kontos D
    Acad Radiol; 2018 Aug; 25(8):977-984. PubMed ID: 29395798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms.
    Niu J; Li H; Zhang C; Li D
    Med Phys; 2021 Jul; 48(7):3878-3892. PubMed ID: 33982807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.
    Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C
    Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model: A prospective and multicentre study.
    Zhou BY; Wang LF; Yin HH; Wu TF; Ren TT; Peng C; Li DX; Shi H; Sun LP; Zhao CK; Xu HX
    EBioMedicine; 2021 Dec; 74():103684. PubMed ID: 34773890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multitask deep learning on mammography to predict extensive intraductal component in invasive breast cancer.
    Tsai HY; Kao YW; Wang JC; Tsai TY; Chung WS; Hsu JS; Hou MF; Weng SF
    Eur Radiol; 2024 Apr; 34(4):2593-2604. PubMed ID: 37812297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breast tumor segmentation using neural cellular automata and shape guided segmentation in mammography images.
    Ali M; Wu T; Hu H; Mahmood T
    PLoS One; 2024; 19(10):e0309421. PubMed ID: 39352900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A twin convolutional neural network with hybrid binary optimizer for multimodal breast cancer digital image classification.
    Oyelade ON; Irunokhai EA; Wang H
    Sci Rep; 2024 Jan; 14(1):692. PubMed ID: 38184742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer.
    Becker AS; Marcon M; Ghafoor S; Wurnig MC; Frauenfelder T; Boss A
    Invest Radiol; 2017 Jul; 52(7):434-440. PubMed ID: 28212138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrast-enhanced mammography in breast cancer screening.
    Coffey K; Jochelson MS
    Eur J Radiol; 2022 Nov; 156():110513. PubMed ID: 36108478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning multi-frequency features in convolutional network for mammography classification.
    Wang Y; Qi Y; Xu C; Lou M; Ma Y
    Med Biol Eng Comput; 2022 Jul; 60(7):2051-2062. PubMed ID: 35553003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.