These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38679055)

  • 1. Mixing, heating and ion-neutral decoupling induced by Rayleigh-Taylor instability in prominence-corona transition regions.
    Lukin VS; Khomenko E; Popescu Braileanu B
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230417. PubMed ID: 38679055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of thermal pressure gradients and ionization (im)balance on the ambipolar diffusion and charge-neutral drifts.
    Gómez Míguez MM; Martínez Gómez D; Khomenko E; Vitas N
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230228. PubMed ID: 38679057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of partial ionization effects in the chromosphere.
    Martínez-Sykora J; De Pontieu B; Hansteen V; Carlsson M
    Philos Trans A Math Phys Eng Sci; 2015 May; 373(2042):. PubMed ID: 25897096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kelvin-Helmholtz-induced mixing in multi-fluid partially ionized plasmas.
    Snow B; Hillier AS
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230227. PubMed ID: 38679056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the ambipolar diffusion formulation for ion-neutral drifts in the non-negligible drift velocity limit.
    Hillier AS
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230229. PubMed ID: 38679053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative loss and ion-neutral collisional effects in astrophysical plasmas.
    Popescu Braileanu B; Keppens R
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230217. PubMed ID: 38679058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetoacoustic cutoff effect in numerical simulations of the partially ionized solar atmosphere.
    Kuźma B; Kadowaki LHS; Murawski K; Musielak ZE; Poedts S; Yuan D; Feng X
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230218. PubMed ID: 38679054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future prospects for partially ionized solar plasmas: the prominence case.
    Parenti S; Luna M; Ballester JL
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230225. PubMed ID: 38679050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alfvén pulse driven spicule-like jets in the presence of thermal conduction and ion-neutral collision in two-fluid regime.
    Srivastava AK; Singh A; Singh B; Murawski K; Zaqarashvili TV; Yuan D; Scullion E; Mishra SK; Dwivedi BN
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230220. PubMed ID: 38679049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial ionization of plasma in solar prominences.
    Heinzel P; Gunár S; Jejčič S
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230221. PubMed ID: 38679046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetohydrodynamic waves in the partially ionized solar plasma.
    Soler R
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230223. PubMed ID: 38679052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of collisions with a second fluid on the temporal development of nonlinear, single-mode, Rayleigh-Taylor instability.
    Cauvet Q; Bernecker B; Bouquet S; Canaud B; Hermeline F; Pichon S
    Phys Rev E; 2022 Jun; 105(6-2):065205. PubMed ID: 35854511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear coupling of Alfvén and magnetoacoustic waves in partially ionized plasmas: the effect of thermal misbalance on propagating waves.
    Ballester JL; Soler R; Terradas J; Carbonell M
    Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230222. PubMed ID: 38679047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rayleigh-Taylor instability in strongly coupled plasma.
    Wani R; Mir A; Batool F; Tiwari S
    Sci Rep; 2022 Jul; 12(1):11557. PubMed ID: 35798786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability.
    Isobe H; Miyagoshi T; Shibata K; Yokoyama T
    Nature; 2005 Mar; 434(7032):478-81. PubMed ID: 15791248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock heating in numerical simulations of kink-unstable coronal loops.
    Bareford MR; Hood AW
    Philos Trans A Math Phys Eng Sci; 2015 May; 373(2042):. PubMed ID: 25897092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects.
    Adams CS; Moser AL; Hsu SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):051101. PubMed ID: 26651638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional magnetic field topology in a region of solar coronal heating.
    Solanki SK; Lagg A; Woch J; Krupp N; Collados M
    Nature; 2003 Oct; 425(6959):692-5. PubMed ID: 14562096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.