BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38679071)

  • 1. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD.
    Yang L; Niu K; Wang J; Shen W; Jiang R; Liu L; Song W; Wang X; Zhang X; Zhang R; Wei D; Fan M; Jia L; Tao K
    J Hepatol; 2024 Apr; ():. PubMed ID: 38679071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiomics analysis reveals metabolic subtypes and identifies diacylglycerol kinase α (DGKA) as a potential therapeutic target for intrahepatic cholangiocarcinoma.
    Liu W; Wang H; Zhao Q; Tao C; Qu W; Hou Y; Huang R; Sun Z; Zhu G; Jiang X; Fang Y; Gao J; Wu X; Yang Z; Ping R; Chen J; Yang R; Chu T; Zhou J; Fan J; Tang Z; Yang D; Shi Y
    Cancer Commun (Lond); 2024 Feb; 44(2):226-250. PubMed ID: 38143235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways.
    Tiemin P; Fanzheng M; Peng X; Jihua H; Ruipeng S; Yaliang L; Yan W; Junlin X; Qingfu L; Zhefeng H; Jian L; Zihao G; Guoxing L; Boshi S; Ming Z; Qinghui M; Desen L; Lianxin L
    J Hepatol; 2020 Apr; 72(4):761-773. PubMed ID: 31837357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation.
    Song X; Xu H; Wang P; Wang J; Affo S; Wang H; Xu M; Liang B; Che L; Qiu W; Schwabe RF; Chang TT; Vogl M; Pes GM; Ribback S; Evert M; Chen X; Calvisi DF
    J Hepatol; 2021 Oct; 75(4):888-899. PubMed ID: 34052254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma.
    Cristinziano G; Porru M; Lamberti D; Buglioni S; Rollo F; Amoreo CA; Manni I; Giannarelli D; Cristofoletti C; Russo G; Borad MJ; Grazi GL; Diodoro MG; Giordano S; Sacconi A; Forcato M; Anastasi S; Leonetti C; Segatto O
    J Hepatol; 2021 Aug; 75(2):351-362. PubMed ID: 33741397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis.
    Wang J; Wang H; Peters M; Ding N; Ribback S; Utpatel K; Cigliano A; Dombrowski F; Xu M; Chen X; Song X; Che L; Evert M; Cossu A; Gordan J; Zeng Y; Chen X; Calvisi DF
    J Hepatol; 2019 Oct; 71(4):742-752. PubMed ID: 31195063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma.
    Carpino G; Cardinale V; Di Giamberardino A; Overi D; Donsante S; Colasanti T; Amato G; Mennini G; Franchitto M; Conti F; Rossi M; Riminucci M; Gaudio E; Alvaro D; Mancone C
    J Hepatol; 2021 Dec; 75(6):1377-1386. PubMed ID: 34329660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenic Roles of Laminin Subunit Gamma-2 in Intrahepatic Cholangiocarcinoma via Promoting EGFR Translation.
    Zhang J; Ji F; Tan Y; Zhao L; Zhao Y; Liu J; Shao L; Shi J; Ye M; He X; Jin J; Zhao B; Huang J; Roessler S; Zheng X; Ji J
    Adv Sci (Weinh); 2024 Mar; ():e2309010. PubMed ID: 38526177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitogen-activated protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma leads to invasive growth and epithelial-mesenchymal transition.
    Yang LX; Gao Q; Shi JY; Wang ZC; Zhang Y; Gao PT; Wang XY; Shi YH; Ke AW; Shi GM; Cai JB; Liu WR; Duan M; Zhao YJ; Ji Y; Gao DM; Zhu K; Zhou J; Qiu SJ; Cao Y; Tang QQ; Fan J
    Hepatology; 2015 Dec; 62(6):1804-16. PubMed ID: 26340507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSH1 promotes progression of intrahepatic cholangiocarcinoma via p38 MAPK-CXCL8 axis.
    Chen F; Aye L; Yu L; Liu L; Liu Y; Lin Y; Gao D; Gao Q; Zhang S
    Carcinogenesis; 2023 May; 44(3):232-241. PubMed ID: 36857607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma.
    Ko S; Kim M; Molina L; Sirica AE; Monga SP
    Adv Cancer Res; 2022; 156():283-317. PubMed ID: 35961703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of genomic mutation signature and tumor mutation burden for prognosis of intrahepatic cholangiocarcinoma.
    Zhang R; Li Q; Fu J; Jin Z; Su J; Zhang J; Chen C; Geng Z; Zhang D
    BMC Cancer; 2021 Feb; 21(1):112. PubMed ID: 33535978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiR-206 suppresses the deterioration of intrahepatic cholangiocarcinoma and promotes sensitivity to chemotherapy by inhibiting interactions with stromal CAFs.
    Yang R; Wang D; Han S; Gu Y; Li Z; Deng L; Yin A; Gao Y; Li X; Yu Y; Wang X
    Int J Biol Sci; 2022; 18(1):43-64. PubMed ID: 34975317
    [No Abstract]   [Full Text] [Related]  

  • 14. NNMT promotes the progression of intrahepatic cholangiocarcinoma by regulating aerobic glycolysis via the EGFR-STAT3 axis.
    Lu S; Ke S; Wang C; Xu Y; Li Z; Song K; Bai M; Zhou M; Yu H; Yin B; Li X; Feng Z; Hua Y; Pan S; Jiang H; Li L; Wu Y; Ma Y
    Oncogenesis; 2022 Jul; 11(1):39. PubMed ID: 35851575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target.
    Alvisi G; Termanini A; Soldani C; Portale F; Carriero R; Pilipow K; Costa G; Polidoro M; Franceschini B; Malenica I; Puccio S; Lise V; Galletti G; Zanon V; Colombo FS; De Simone G; Tufano M; Aghemo A; Di Tommaso L; Peano C; Cibella J; Iannacone M; Roychoudhuri R; Manzo T; Donadon M; Torzilli G; Kunderfranco P; Di Mitri D; Lugli E; Lleo A
    J Hepatol; 2022 Nov; 77(5):1359-1372. PubMed ID: 35738508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Proteomics Reveals Down-Regulated Glycolysis/Gluconeogenesis in the Large-Duct Type Intrahepatic Cholangiocarcinoma.
    Guo Y; Li Q; Ren W; Wu H; Wang C; Li X; Xue B; Qiu Y; Zhang J; Chen J; Fang L
    J Proteome Res; 2022 Oct; 21(10):2504-2514. PubMed ID: 36066509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FUT8 is regulated by miR-122-5p and promotes malignancies in intrahepatic cholangiocarcinoma via PI3K/AKT signaling.
    Chen F; Li Y; Aye L; Wu Y; Dong L; Yang Z; Gao Q; Zhang S
    Cell Oncol (Dordr); 2023 Feb; 46(1):79-91. PubMed ID: 36348252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis.
    Mancarella S; Serino G; Dituri F; Cigliano A; Ribback S; Wang J; Chen X; Calvisi DF; Giannelli G
    Cell Death Differ; 2020 Aug; 27(8):2330-2343. PubMed ID: 32042099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CircZNF215 promotes tumor growth and metastasis through inactivation of the PTEN/AKT pathway in intrahepatic cholangiocarcinoma.
    Liao W; Du J; Li L; Wu X; Chen X; Feng Q; Xu L; Chen X; Liao M; Huang J; Yuan K; Zeng Y
    J Exp Clin Cancer Res; 2023 May; 42(1):125. PubMed ID: 37198696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma.
    Lixin S; Wei S; Haibin S; Qingfu L; Tiemin P
    Mol Carcinog; 2020 Dec; 59(12):1371-1381. PubMed ID: 33052627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.