These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38680066)
41. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries. Zhao M; Chen X; Li XY; Li BQ; Huang JQ Adv Mater; 2021 Apr; 33(13):e2007298. PubMed ID: 33586230 [TBL] [Abstract][Full Text] [Related]
42. A Fe Qi Y; Li QJ; Wu Y; Bao SJ; Li C; Chen Y; Wang G; Xu M Nat Commun; 2021 Nov; 12(1):6347. PubMed ID: 34732738 [TBL] [Abstract][Full Text] [Related]
43. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries. Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961 [TBL] [Abstract][Full Text] [Related]
44. Design and Construction of Sodium Polysulfides Defense System for Room-Temperature Na-S Battery. Yang T; Guo B; Du W; Aslam MK; Tao M; Zhong W; Chen Y; Bao SJ; Zhang X; Xu M Adv Sci (Weinh); 2019 Dec; 6(23):1901557. PubMed ID: 31832316 [TBL] [Abstract][Full Text] [Related]
45. Robust Electrocatalytic Li Cui Y; Li J; Cai Y; Zhang H; Zhang S Small; 2022 Nov; 18(44):e2204183. PubMed ID: 36148874 [TBL] [Abstract][Full Text] [Related]
46. Robust Room-Temperature Sodium-Sulfur Batteries Enabled by a Sandwich-Structured MXene@C/Polyolefin/MXene@C Dual-functional Separator. Wang C; Wu K; Cui J; Fang X; Li J; Zheng N Small; 2022 Oct; 18(43):e2106983. PubMed ID: 35187834 [TBL] [Abstract][Full Text] [Related]
47. Streamline Sulfur Redox Reactions to Achieve Efficient Room-Temperature Sodium-Sulfur Batteries. Lei Y; Wu C; Lu X; Hua W; Li S; Liang Y; Liu H; Lai WH; Gu Q; Cai X; Wang N; Wang YX; Chou SL; Liu HK; Wang G; Dou SX Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202200384. PubMed ID: 35119192 [TBL] [Abstract][Full Text] [Related]
48. Rational Design of TiO Dong L; Jiang W; Pan K; Zhang L Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38132982 [TBL] [Abstract][Full Text] [Related]
49. Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries. Liu H; Lai WH; Yang Q; Lei Y; Wu C; Wang N; Wang YX; Chou SL; Liu HK; Dou SX Nanomicro Lett; 2021 May; 13(1):121. PubMed ID: 34138346 [TBL] [Abstract][Full Text] [Related]
50. Mo Zhang S; Yao Y; Jiao X; Ma M; Huang H; Zhou X; Wang L; Bai J; Yu Y Adv Mater; 2021 Oct; 33(43):e2103846. PubMed ID: 34463381 [TBL] [Abstract][Full Text] [Related]
51. Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries. Li Q; Guo J; Zhao J; Wang C; Yan F Nanoscale; 2019 Jan; 11(2):647-655. PubMed ID: 30565632 [TBL] [Abstract][Full Text] [Related]
52. Hybrid Anatase/Rutile Nanodots-Embedded Covalent Organic Frameworks with Complementary Polysulfide Adsorption for High-Performance Lithium-Sulfur Batteries. Yang Z; Peng C; Meng R; Zu L; Feng Y; Chen B; Mi Y; Zhang C; Yang J ACS Cent Sci; 2019 Nov; 5(11):1876-1883. PubMed ID: 31807689 [TBL] [Abstract][Full Text] [Related]
53. Cobalt Phosphide Nanoflake-Induced Flower-like Sulfur for High Redox Kinetics and Fast Ion Transfer in Lithium-Sulfur Batteries. Qi C; Li Z; Sun C; Chen C; Jin J; Wen Z ACS Appl Mater Interfaces; 2020 Nov; 12(44):49626-49635. PubMed ID: 33080137 [TBL] [Abstract][Full Text] [Related]
54. High Pseudocapacitance Boosts Ultrafast, High-Capacity Sodium Storage of 3D Graphene Foam-Encapsulated TiO Luo R; Ma Y; Qu W; Qian J; Li L; Wu F; Chen R ACS Appl Mater Interfaces; 2020 May; 12(21):23939-23950. PubMed ID: 32369339 [TBL] [Abstract][Full Text] [Related]
55. Synergistically boosting the anchoring effect and catalytic activity of MXenes as bifunctional electrocatalysts for sodium-sulfur batteries by single-atom catalyst engineering. Li N; Zhan Y; Wu H; Fan J; Jia J Nanoscale; 2023 Feb; 15(6):2747-2755. PubMed ID: 36655846 [TBL] [Abstract][Full Text] [Related]
56. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Hong XJ; Tan TX; Guo YK; Tang XY; Wang JY; Qin W; Cai YP Nanoscale; 2018 Feb; 10(6):2774-2780. PubMed ID: 29323375 [TBL] [Abstract][Full Text] [Related]
57. Metal-Organic Frameworks-Derived Nitrogen-Doped Porous Carbon Nanocubes with Embedded Co Nanoparticles as Efficient Sulfur Immobilizers for Room Temperature Sodium-Sulfur Batteries. Mou J; Li Y; Liu T; Zhang W; Li M; Xu Y; Zhong L; Pan W; Yang C; Huang J; Liu M Small Methods; 2021 Aug; 5(8):e2100455. PubMed ID: 34927873 [TBL] [Abstract][Full Text] [Related]
58. Phosphor-Doped Carbon Network Electrocatalyst Enables Accelerated Redox Kinetics of Polysulfides for Sodium-Sulfur Batteries. Wang Y; Wang Y; Xu C; Meng Y; Liu P; Huang C; Yang L; Li R; Tang S; Zeng J; Wang X ACS Nano; 2024 Jan; 18(4):3839-3849. PubMed ID: 38227979 [TBL] [Abstract][Full Text] [Related]
59. The Electrostatic Attraction and Catalytic Effect Enabled by Ionic-Covalent Organic Nanosheets on MXene for Separator Modification of Lithium-Sulfur Batteries. Li P; Lv H; Li Z; Meng X; Lin Z; Wang R; Li X Adv Mater; 2021 Apr; 33(17):e2007803. PubMed ID: 33734507 [TBL] [Abstract][Full Text] [Related]
60. Integrating Polar and Conductive Fe Cao Z; Jia J; Chen S; Li H; Sang M; Yang M; Wang X; Yang S ACS Appl Mater Interfaces; 2019 Oct; 11(43):39772-39781. PubMed ID: 31596063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]