These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38680335)

  • 1. Yield and Energy Modeling for Biochar and Bio-Oil Using Pyrolysis Temperature and Biomass Constituents.
    Awad MI; Makkawi Y; Hassan NM
    ACS Omega; 2024 Apr; 9(16):18654-18667. PubMed ID: 38680335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pyrolysis parameters on physicochemical properties of biochar and bio-oil and application in asphalt.
    Zhou X; Moghaddam TB; Chen M; Wu S; Zhang Y; Zhang X; Adhikari S; Zhang X
    Sci Total Environ; 2021 Aug; 780():146448. PubMed ID: 33773351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products.
    Patra BR; Nanda S; Dalai AK; Meda V
    Chemosphere; 2021 Dec; 285():131431. PubMed ID: 34329143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis.
    Gupta GK; Gupta PK; Mondal MK
    Waste Manag; 2019 Mar; 87():499-511. PubMed ID: 31109550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valorization of rubberwood sawdust and sewage sludge by pyrolysis and co-pyrolysis using agitated bed reactor for producing biofuel or value-added products.
    Ali L; Palamanit A; Techato K; Baloch KA; Jutidamrongphan W
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):1338-1363. PubMed ID: 34355326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review.
    Allende S; Brodie G; Jacob MV
    Environ Res; 2023 Jun; 226():115619. PubMed ID: 36906271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel.
    Egbosiuba TC
    Heliyon; 2022 Aug; 8(8):e10114. PubMed ID: 36042740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a sustainable waste-to-energy pathway to pequi biomass residues: Biochar, syngas, and biodiesel analysis.
    Ghesti GF; Silveira EA; Guimarães MG; Evaristo RBW; Costa M
    Waste Manag; 2022 Apr; 143():144-156. PubMed ID: 35255448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach.
    O'Boyle M; Mohamed BA; Li LY
    Chemosphere; 2024 Feb; 350():141074. PubMed ID: 38160959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar.
    Trabelsi ABH; Zaafouri K; Friaa A; Abidi S; Naoui S; Jamaaoui F
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9777-9791. PubMed ID: 33156501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment.
    Alam SN; Singh B; Guldhe A; Raghuvanshi S; Sangwan KS
    Sci Total Environ; 2024 Apr; 919():170797. PubMed ID: 38342457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction model for biochar energy potential based on biomass properties and pyrolysis conditions derived from rough set machine learning.
    Tang JY; Chung BYH; Ang JC; Chong JW; Tan RR; Aviso KB; Chemmangattuvalappil NG; Thangalazhy-Gopakumar S
    Environ Technol; 2024 Jun; 45(15):2908-2922. PubMed ID: 36927324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel.
    Selvarajoo A; Wong YL; Khoo KS; Chen WH; Show PL
    Chemosphere; 2022 May; 294():133671. PubMed ID: 35092753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application.
    Pariyar P; Kumari K; Jain MK; Jadhao PS
    Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waste-to-energy: Co-pyrolysis of potato peel and macroalgae for biofuels and biochemicals.
    Fardi Z; Shahbeik H; Nosrati M; Motamedian E; Tabatabaei M; Aghbashlo M
    Environ Res; 2024 Feb; 242():117614. PubMed ID: 37996005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.
    Irfan M; Chen Q; Yue Y; Pang R; Lin Q; Zhao X; Chen H
    Bioresour Technol; 2016 Jul; 211():457-63. PubMed ID: 27035478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting biochar properties and pyrolysis life-cycle inventories with compositional modeling.
    Kane S; Miller SA
    Bioresour Technol; 2024 May; 399():130551. PubMed ID: 38458265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production.
    Lei H; Ren S; Wang L; Bu Q; Julson J; Holladay J; Ruan R
    Bioresour Technol; 2011 May; 102(10):6208-13. PubMed ID: 21377870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.
    Neumann J; Meyer J; Ouadi M; Apfelbacher A; Binder S; Hornung A
    Waste Manag; 2016 Jan; 47(Pt A):141-8. PubMed ID: 26190827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.