These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3868034)

  • 1. Energy expenditure and cardiac response in above-knee amputees while using prostheses with open and locked knee mechanisms.
    Isakov E; Susak Z; Becker E
    Scand J Rehabil Med Suppl; 1985; 12():108-11. PubMed ID: 3868034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet.
    Torburn L; Powers CM; Guiterrez R; Perry J
    J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control.
    Boonstra AM; Schrama J; Fidler V; Eisma WH
    Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study.
    Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K
    Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen consumption and cardiac response of short-leg and long-leg prosthetic ambulation in a patient with bilateral above-knee amputation: comparisons with able-bodied men.
    Crouse SF; Lessard CS; Rhodes J; Lowe RC
    Arch Phys Med Rehabil; 1990 Apr; 71(5):313-7. PubMed ID: 2327883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen consumption of elderly persons with bilateral below knee amputations: ambulation vs wheelchair propulsion.
    DuBow LL; Witt PL; Kadaba MP; Reyes R; Cochran V
    Arch Phys Med Rehabil; 1983 Jun; 64(6):255-9. PubMed ID: 6860095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic demands of rock climbing in transfemoral amputees.
    Highsmith MJ; Kahle JT; Fox JL; Shaw KL; Quillen WS; Mengelkoch LJ
    Int J Sports Med; 2010 Jan; 31(1):38-43. PubMed ID: 19885774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amputation: energy cost of ambulation.
    Huang CT; Jackson JR; Moore NB; Fine PR; Kuhlemeier KV; Traugh GH; Saunders PT
    Arch Phys Med Rehabil; 1979 Jan; 60(1):18-24. PubMed ID: 420566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energy cost of walking with arthritis of the hip and knee.
    Waters RL; Perry J; Conaty P; Lunsford B; O'Meara P
    Clin Orthop Relat Res; 1987 Jan; (214):278-84. PubMed ID: 3791753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility function of a prosthetic knee joint with an automatic stance phase lock.
    Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S
    Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does having a computerized prosthetic knee influence cognitive performance during amputee walking?
    Williams RM; Turner AP; Orendurff M; Segal AD; Klute GK; Pecoraro J; Czerniecki J
    Arch Phys Med Rehabil; 2006 Jul; 87(7):989-94. PubMed ID: 16813788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey.
    Seymour R; Engbretson B; Kott K; Ordway N; Brooks G; Crannell J; Hickernell E; Wheeler K
    Prosthet Orthot Int; 2007 Mar; 31(1):51-61. PubMed ID: 17365885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy expenditure of below-knee amputees during harness-supported treadmill ambulation.
    Hunter D; Smith Cole E; Murray JM; Murray TD
    J Orthop Sports Phys Ther; 1995 May; 21(5):268-76. PubMed ID: 7787850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen uptake and heart rate during prosthetic walking in healthy male unilateral above-knee amputees.
    James U
    Scand J Rehabil Med; 1973; 5(2):71-80. PubMed ID: 4695243
    [No Abstract]   [Full Text] [Related]  

  • 15. Energy expenditure in below-knee amputees: correlation with stump length.
    Gonzalez EG; Corcoran PJ; Reyes RL
    Arch Phys Med Rehabil; 1974 Mar; 55(3):111-9. PubMed ID: 4817680
    [No Abstract]   [Full Text] [Related]  

  • 16. Uphill and downhill walking in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of terrain on metabolic and temporal gait characteristics of unilateral transtibial amputees.
    Paysant J; Beyaert C; Datié AM; Martinet N; André JM
    J Rehabil Res Dev; 2006; 43(2):153-60. PubMed ID: 16847782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A
    J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thigh muscle strength in below-knee amputees.
    Renström P; Grimby G; Larsson E
    Scand J Rehabil Med Suppl; 1983; 9():163-73. PubMed ID: 6585938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees.
    Genin JJ; Bastien GJ; Franck B; Detrembleur C; Willems PA
    Eur J Appl Physiol; 2008 Aug; 103(6):655-63. PubMed ID: 18478251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.