These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38680356)

  • 1. Completing and Balancing Database Excerpted Chemical Reactions with a Hybrid Mechanistic-Machine Learning Approach.
    Zhang C; Arun A; Lapkin AA
    ACS Omega; 2024 Apr; 9(16):18385-18399. PubMed ID: 38680356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction rebalancing: a novel approach to curating reaction databases.
    Phan TL; Weinbauer K; Gärtner T; Merkle D; Andersen JL; Fagerberg R; Stadler PF
    J Cheminform; 2024 Jul; 16(1):82. PubMed ID: 39030583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AutoTemplate: enhancing chemical reaction datasets for machine learning applications in organic chemistry.
    Chen LY; Li YP
    J Cheminform; 2024 Jun; 16(1):74. PubMed ID: 38937840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information Adapted Machine Learning Models for Prediction in Clinical Workflow.
    Jauk S; Kramer D; Quehenberger F; Veeranki SPK; Hayn D; Schreier G; Leodolter W
    Stud Health Technol Inform; 2019; 260():65-72. PubMed ID: 31118320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise atom-to-atom mapping for organic reactions via human-in-the-loop machine learning.
    Chen S; An S; Babazade R; Jung Y
    Nat Commun; 2024 Mar; 15(1):2250. PubMed ID: 38480709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing molecular graphs with descriptors for the prediction of chemical reaction yields.
    Yarish D; Garkot S; Grygorenko OO; Radchenko DS; Moroz YS; Gurbych O
    J Comput Chem; 2023 Jan; 44(2):76-92. PubMed ID: 36264601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions.
    Schwaller P; Hoover B; Reymond JL; Strobelt H; Laino T
    Sci Adv; 2021 Apr; 7(15):. PubMed ID: 33827815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-Learning-Guided Discovery of Electrochemical Reactions.
    Zahrt AF; Mo Y; Nandiwale KY; Shprints R; Heid E; Jensen KF
    J Am Chem Soc; 2022 Dec; 144(49):22599-22610. PubMed ID: 36459170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling an organic synthesis robot with machine learning to search for new reactivity.
    Granda JM; Donina L; Dragone V; Long DL; Cronin L
    Nature; 2018 Jul; 559(7714):377-381. PubMed ID: 30022133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning.
    Kayala MA; Baldi P
    J Chem Inf Model; 2012 Oct; 52(10):2526-40. PubMed ID: 22978639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DRACON: disconnected graph neural network for atom mapping in chemical reactions.
    Nikitin F; Isayev O; Strijov V
    Phys Chem Chem Phys; 2020 Nov; 22(45):26478-26486. PubMed ID: 33185200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to predict chemical reactions.
    Kayala MA; Azencott CA; Chen JH; Baldi P
    J Chem Inf Model; 2011 Sep; 51(9):2209-22. PubMed ID: 21819139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning.
    Fortunato ME; Coley CW; Barnes BC; Jensen KF
    J Chem Inf Model; 2020 Jul; 60(7):3398-3407. PubMed ID: 32568548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substructure-based neural machine translation for retrosynthetic prediction.
    Ucak UV; Kang T; Ko J; Lee J
    J Cheminform; 2021 Jan; 13(1):4. PubMed ID: 33431017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Reaction Yields via Supervised Learning.
    Żurański AM; Martinez Alvarado JI; Shields BJ; Doyle AG
    Acc Chem Res; 2021 Apr; 54(8):1856-1865. PubMed ID: 33788552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic retrosynthetic route planning using template-free models.
    Lin K; Xu Y; Pei J; Lai L
    Chem Sci; 2020 Mar; 11(12):3355-3364. PubMed ID: 34122843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors.
    Guan Y; Coley CW; Wu H; Ranasinghe D; Heid E; Struble TJ; Pattanaik L; Green WH; Jensen KF
    Chem Sci; 2020 Dec; 12(6):2198-2208. PubMed ID: 34163985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An explainability framework for deep learning on chemical reactions exemplified by enzyme-catalysed reaction classification.
    Probst D
    J Cheminform; 2023 Nov; 15(1):113. PubMed ID: 37996942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.