These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38680356)

  • 21. Exploring data-driven chemical SMILES tokenization approaches to identify key protein-ligand binding moieties.
    Temizer AB; Uludoğan G; Özçelik R; Koulani T; Ozkirimli E; Ulgen KO; Karali N; Özgür A
    Mol Inform; 2024 Mar; 43(3):e202300249. PubMed ID: 38196065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stroke Prediction with Machine Learning Methods among Older Chinese.
    Wu Y; Fang Y
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32178250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine Learning of Reaction Properties via Learned Representations of the Condensed Graph of Reaction.
    Heid E; Green WH
    J Chem Inf Model; 2022 May; 62(9):2101-2110. PubMed ID: 34734699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization.
    Choi J; Lee J
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of Organic Reaction Outcomes Using Machine Learning.
    Coley CW; Barzilay R; Jaakkola TS; Green WH; Jensen KF
    ACS Cent Sci; 2017 May; 3(5):434-443. PubMed ID: 28573205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perturbation-Theory and Machine Learning (PTML) Model for High-Throughput Screening of Parham Reactions: Experimental and Theoretical Studies.
    Simón-Vidal L; García-Calvo O; Oteo U; Arrasate S; Lete E; Sotomayor N; González-Díaz H
    J Chem Inf Model; 2018 Jul; 58(7):1384-1396. PubMed ID: 29898360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
    Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A
    Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substituting density functional theory in reaction barrier calculations for hydrogen atom transfer in proteins.
    Riedmiller K; Reiser P; Bobkova E; Maltsev K; Gryn'ova G; Friederich P; Gräter F
    Chem Sci; 2024 Feb; 15(7):2518-2527. PubMed ID: 38362411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining.
    Wen M; Blau SM; Xie X; Dwaraknath S; Persson KA
    Chem Sci; 2022 Feb; 13(5):1446-1458. PubMed ID: 35222929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies.
    Jorner K; Brinck T; Norrby PO; Buttar D
    Chem Sci; 2021 Jan; 12(3):1163-1175. PubMed ID: 36299676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis.
    Mahjour B; Shen Y; Cernak T
    Acc Chem Res; 2021 May; 54(10):2337-2346. PubMed ID: 33891404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Template Size, Canonicalization, and Exclusivity for Retrosynthesis and Reaction Prediction Applications.
    Heid E; Liu J; Aude A; Green WH
    J Chem Inf Model; 2022 Jan; 62(1):16-26. PubMed ID: 34939786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach.
    Sükei E; Norbury A; Perez-Rodriguez MM; Olmos PM; Artés A
    JMIR Mhealth Uhealth; 2021 Mar; 9(3):e24465. PubMed ID: 33749612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine Learning Guided Atom Mapping of Metabolic Reactions.
    Litsa EE; Peña MI; Moll M; Giannakopoulos G; Bennett GN; Kavraki LE
    J Chem Inf Model; 2019 Mar; 59(3):1121-1135. PubMed ID: 30500191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Polymers' Glass Transition Temperature by a Chemical Language Processing Model.
    Chen G; Tao L; Li Y
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34200505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using Active Learning to Develop Machine Learning Models for Reaction Yield Prediction.
    Viet Johansson S; Gummesson Svensson H; Bjerrum E; Schliep A; Haghir Chehreghani M; Tyrchan C; Engkvist O
    Mol Inform; 2022 Dec; 41(12):e2200043. PubMed ID: 35732584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.