These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38680372)

  • 1. Origin and Formation Mechanism of the Late Permian Black Siliceous Rocks in the Lower Yangtze Region.
    Gao X; Liu Q; Fang C; Guo Y
    ACS Omega; 2024 Apr; 9(16):17848-17859. PubMed ID: 38680372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Factors and Formation Models of Organic Matter Accumulation for the Upper Permian Dalong Formation Black Shale in the Lower Yangtze Region, South China: Constraints from Geochemical Evidence.
    Ding J; Zhang J; Huo Z; Shen B; Shi G; Yang Z; Li X; Li C
    ACS Omega; 2021 Feb; 6(5):3681-3692. PubMed ID: 33585748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the order degree and geochemical characteristics of major elements of siliceous rock in eastern Qinling area, China.
    Ming L; Li HZ; Zhao MZ; Ma MW; Yang ZJ; Liang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3005-10. PubMed ID: 25752047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.
    Li H; Zhai M; Zhang L; Gao L; Yang Z; Zhou Y; He J; Liang J; Zhou L; Voudouris PCh
    ScientificWorldJournal; 2014; 2014():780910. PubMed ID: 25140349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada.
    Hayashi KI; Fujisawa H; Holland HD; Ohmoto H
    Geochim Cosmochim Acta; 1997; 61(19):4115-37. PubMed ID: 11540490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siliceous Origin of the Cambrian Qiongzhusi Formation Shale in the Middle Part of the Upper Yangtze Platform: Significance of Organic Matter Enrichment.
    Wang X; Zhang J; Zhao R; Gao P; Liu Q; Pang Y; Zhao Y; Zhang J; Yang C; Ding K; Mo Q
    ACS Omega; 2023 Jul; 8(28):25358-25369. PubMed ID: 37483232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rare Earth Element Characteristics of Shales from Wufeng-Longmaxi Formations in Deep-Buried Areas of the Northern Sichuan Basin, Southern China: Implications for Provenance, Depositional Conditions, and Paleoclimate.
    Xiao B; Guo D; Li S; Xiong S; Jing Z; Feng M; Fu X; Zhao Z
    ACS Omega; 2024 Jan; 9(2):2088-2103. PubMed ID: 38250373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paleoenvironment Evolutionary Characteristics of Niutitang Shale in Western Hubei, Middle Yangtze, China.
    Xu L; Huang S; Liu Z; Zhang Y; Wen Y; Zhou X; Chen W; Ren Z; Wen J
    ACS Omega; 2022 Jul; 7(28):24365-24383. PubMed ID: 35874201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.
    Li H; Zhai M; Zhang L; Zhou Y; Yang Z; He J; Liang J; Zhou L
    ScientificWorldJournal; 2013; 2013():949603. PubMed ID: 24302882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sedimentation Models and Development Mechanisms of Organic-Rich Shales of the Lower Carboniferous Dawuba Formation: A Case Study in the Yaziluo Rift Trough, South of Guizhou Province, Southern China.
    Zheng F; Tang X; Yuan K; Lin T; You M; Niu J; Zi Y; Liang Y
    ACS Omega; 2022 Aug; 7(33):29054-29071. PubMed ID: 36033673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing the Climatic-Oceanic Environment and Exploring the Enrichment Mechanism of Organic Matter in the Black Shale across the Late Ordovician-Early Silurian Transition on the Upper Yangtze Platform Using Geochemical Proxies.
    Wei Z; Wang Y; Wang G; Zhang T; He W; Ma X
    ACS Omega; 2020 Oct; 5(42):27442-27454. PubMed ID: 33134707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in palaeoclimate and palaeoenvironment in the Upper Yangtze area (South China) during the Ordovician-Silurian transition.
    Men X; Mou C; Ge X
    Sci Rep; 2022 Aug; 12(1):13186. PubMed ID: 35915216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemistry of rocks (Late Cretaceous) in the Anambra Basin, SE Nigeria: insights into provenance, tectonic setting, and other palaeo-conditions.
    Ejeh OI
    Heliyon; 2021 Oct; 7(10):e08110. PubMed ID: 34660927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Element mobility related to rock weathering and soil formation at the westward side of the southernmost Patagonian Andes.
    Klaes B; Wörner G; Thiele-Bruhn S; Arz HW; Struck J; Dellwig O; Groschopf N; Lorenz M; Wagner JF; Urrea OB; Lamy F; Kilian R
    Sci Total Environ; 2022 Apr; 817():152977. PubMed ID: 35016939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rare earth element geochemistry of Middle Devonian reefal limestones of the Dianqiangui Basin, South China: implications for nutrient sources and expansion of the reef ecosystem.
    Mao Q; Gu S; Li H; Lash GG; Zhang T; Xie X; Guo Z
    PeerJ; 2022; 10():e13663. PubMed ID: 35898942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Provenance, paleoweathering, depositional setting and paleoclimatic constraints of cretaceous and neogene deposits of The Mamfe Basin, southwest Cameroon.
    Bilobé JA; Takem Eyong J; Samankassou E
    Heliyon; 2022 Sep; 8(9):e10304. PubMed ID: 36097494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sedimentary Paleoenvironment and Organic Matter Enrichment Characteristics of Lacustrine Shahezi Shale in Songliao Basin: Insights from the Continental Scientific Drilling.
    Han S; Du X; He Y; Wang C; Huo M; Mu X; Wang Y; Huang J; Zhang C
    ACS Omega; 2024 May; 9(19):21097-21115. PubMed ID: 38764674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary.
    Sun H; Xiao Y; Gao Y; Zhang G; Casey JF; Shen Y
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3782-3787. PubMed ID: 29581278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of soil erosion and anoxic-euxinic ocean in the Permian-Triassic marine crisis.
    Kaiho K; Saito R; Ito K; Miyaji T; Biswas R; Tian L; Sano H; Shi Z; Takahashi S; Tong J; Liang L; Oba M; Nara FW; Tsuchiya N; Chen ZQ
    Heliyon; 2016 Aug; 2(8):e00137. PubMed ID: 27547833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A geochemical view into continental palaeotemperatures of the end-Permian using oxygen and hydrogen isotope composition of secondary silica in chert rubble breccia: Kaibab Formation, Grand Canyon (USA).
    Kenny R
    Geochem Trans; 2018 Jan; 19(1):2. PubMed ID: 29340852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.