These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38680622)

  • 1. Swing-phase detection of locomotive mode transitions for smooth multi-functional robotic lower-limb prosthesis control.
    Haque MR; Islam MR; Sazonov E; Shen X
    Front Robot AI; 2024; 11():1267072. PubMed ID: 38680622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion Mode Recognition With Robotic Transtibial Prosthesis in Inter-Session and Inter-Day Applications.
    Zheng E; Wang Q; Qiao H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1836-1845. PubMed ID: 31403436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intent recognition in a powered lower limb prosthesis using time history information.
    Young AJ; Simon AM; Fey NP; Hargrove LJ
    Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses.
    Xu D; Feng Y; Mai J; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower limb joint biomechanics-based identification of gait transitions in between level walking and stair ambulation.
    Grimmer M; Zeiss J; Weigand F; Zhao G; Lamm S; Steil M; Heller A
    PLoS One; 2020; 15(9):e0239148. PubMed ID: 32936793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User-Independent Intent Recognition for Lower Limb Prostheses Using Depth Sensing.
    Massalin Y; Abdrakhmanova M; Varol HA
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1759-1770. PubMed ID: 29989950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Locomotion Mode Recognition Algorithm Using Adaptive Dynamic Movement Primitives.
    Eken H; Lanotte F; Papapicco V; Penna MF; Gruppioni E; Trigili E; Crea S; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4318-4328. PubMed ID: 37883286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees.
    Zheng E; Wang L; Wei K; Wang Q
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.
    Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks.
    Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.
    Afzal T; White G; Wright AB; Iqbal K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review.
    Xu D; Wang Q
    Cyborg Bionic Syst; 2021; 2021():9863761. PubMed ID: 36285130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.