These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 38680894)

  • 1. Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope.
    Hu H; Ewert SD; Kollmeier B; Vickers D
    PeerJ; 2024; 12():e17104. PubMed ID: 38680894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants in Unanesthetized Rabbits.
    Chung Y; Hancock KE; Delgutte B
    J Neurosci; 2016 May; 36(20):5520-31. PubMed ID: 27194332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective measure of binaural processing: Acoustic change complex in response to interaural phase differences.
    Fan Y; Gifford RH
    Hear Res; 2024 Jul; 448():109020. PubMed ID: 38763034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temporal mismatch across listening sides affects cortical auditory evoked responses in normal hearing listeners and cochlear implant users with contralateral acoustic hearing.
    Dolhopiatenko H; Segovia-Martinez M; Nogueira W
    Hear Res; 2024 Sep; 451():109088. PubMed ID: 39032483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants.
    Salloum CA; Valero J; Wong DD; Papsin BC; van Hoesel R; Gordon KA
    Ear Hear; 2010 Aug; 31(4):441-56. PubMed ID: 20489647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.
    Hartley DE; Isaiah A
    PLoS One; 2014; 9(8):e104097. PubMed ID: 25093417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent or integrated processing of interaural time and level differences in human auditory cortex?
    Altmann CF; Terada S; Kashino M; Goto K; Mima T; Fukuyama H; Furukawa S
    Hear Res; 2014 Jun; 312():121-7. PubMed ID: 24709274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli.
    Hu H; Ewert SD; McAlpine D; Dietz M
    J Acoust Soc Am; 2017 Mar; 141(3):1862. PubMed ID: 28372072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound Source Localization by Cochlear Implant Recipients with Normal Hearing in the Contralateral Ear: Effects of Spectral Content and Duration of Listening Experience.
    Dillon MT; Rooth MA; Canfarotta MW; Richter ME; Thompson NJ; Brown KD
    Audiol Neurootol; 2022; 27(6):437-448. PubMed ID: 35439753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants.
    Smith ZM; Delgutte B
    J Neurophysiol; 2008 May; 99(5):2390-407. PubMed ID: 18287556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extent of lateralization at large interaural time differences in simulated electric hearing and bilateral cochlear implant users.
    Baumgärtel RM; Hu H; Kollmeier B; Dietz M
    J Acoust Soc Am; 2017 Apr; 141(4):2338. PubMed ID: 28464641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.
    Altmann CF; Ueda R; Bucher B; Furukawa S; Ono K; Kashino M; Mima T; Fukuyama H
    Neuroimage; 2017 Oct; 159():185-194. PubMed ID: 28756239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences.
    Noel VA; Eddington DK
    J Acoust Soc Am; 2013 Apr; 133(4):2314-28. PubMed ID: 23556598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.