These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38681680)

  • 1. Design and performance of GaSb-based quantum cascade detectors.
    Giparakis M; Windischhofer A; Isceri S; Schrenk W; Schwarz B; Strasser G; Andrews AM
    Nanophotonics; 2024 Apr; 13(10):1773-1780. PubMed ID: 38681680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-Balanced InAs/AlSb Type-II Superlattice Structures Growth on GaSb Substrate by Molecular Beam Epitaxy.
    Marchewka M; Jarosz D; Ruszała M; Juś A; Krzemiński P; Płoch D; Maś K; Wojnarowska-Nowak R
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface Intermixing in Type II InAs/GaInAsSb Quantum Wells Designed for Active Regions of Mid-Infrared-Emitting Interband Cascade Lasers.
    Motyka M; Sęk G; Ryczko K; Dyksik M; Weih R; Patriarche G; Misiewicz J; Kamp M; Höfling S
    Nanoscale Res Lett; 2015 Dec; 10(1):471. PubMed ID: 26643652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of GaAs and GaSb substrates on detection parameters of InAs/GaSb superlattice-based mid-infrared interband cascade photodetectors.
    Hackiewicz K; Kopytko M; Rutkowski J; Martyniuk P; Ciura Ł
    Appl Opt; 2020 Jun; 59(17):E42-E47. PubMed ID: 32543512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Noise in Specific Detectivity of InAs/GaSb Superlattice MWIR Bariodes.
    Czuba K; Ciura Ł; Sankowska I; Papis-Polakowska E; Jasik A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-infrared III-V semiconductor lasers epitaxially grown on Si substrates.
    Tournié E; Monge Bartolome L; Rio Calvo M; Loghmari Z; Díaz-Thomas DA; Teissier R; Baranov AN; Cerutti L; Rodriguez JB
    Light Sci Appl; 2022 Jun; 11(1):165. PubMed ID: 35650192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Interfacial Schemes on the Optical and Structural Properties of InAs/GaSb Type-II Superlattices.
    Alshahrani D; Kesaria M; Jiménez JJ; Kwan D; Srivastava V; Delmas M; Morales FM; Liang B; Huffaker D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8624-8635. PubMed ID: 36724387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
    Liu JS; Zhu Y; Goley PS; Hudait MK
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2512-7. PubMed ID: 25568961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate.
    Shuhui Z; Lu W; Zhenwu S; Yanxiang C; Haitao T; Huaiju G; Haiqiang J; Wenxin W; Hong C; Liancheng Z
    Nanoscale Res Lett; 2012 Jan; 7(1):87. PubMed ID: 22277096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Properties of Midwave and Longwave InAs/GaSb Superlattices Grown on GaAs Substrates by Molecular Beam Epitaxy.
    Benyahia D; Kubiszyn Ł; Michalczewski K; Boguski J; Kębłowski A; Martyniuk P; Piotrowski J; Rogalski A
    Nanoscale Res Lett; 2018 Jul; 13(1):196. PubMed ID: 29978267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain relief and growth optimization of GaSb on GaP by molecular beam epitaxy.
    Wang Y; Ruterana P; Chen J; Desplanque L; El Kazzi S; Wallart X
    J Phys Condens Matter; 2012 Aug; 24(33):335802. PubMed ID: 22836299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared photoluminescence revealing internal quantum efficiency enhancement of type-I and type-II InAs core/shell nanowires.
    Chen X; Alradhi H; Jin ZM; Zhu L; Sanchez AM; Ma S; Zhuang Q; Shao J
    Opt Lett; 2022 Oct; 47(19):5208-5211. PubMed ID: 36181223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Long-Wave Infrared Band-Edge (LWIR BE) thermometry instrument.
    Marquis J; Roodenko K; Pinsukanjana P; Frensley W
    Rev Sci Instrum; 2018 Jul; 89(7):074903. PubMed ID: 30068112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices.
    Haddadi A; Razeghi M
    Opt Lett; 2017 Nov; 42(21):4275-4278. PubMed ID: 29088141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices.
    Hoang AM; Dehzangi A; Adhikary S; Razeghi M
    Sci Rep; 2016 Apr; 6():24144. PubMed ID: 27051979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and fabrication of InAs/GaSb type II superlattice mid-wavelength infrared photodetectors.
    Chen J; Xu Q; Zhou Y; Jin J; Lin C; He L
    Nanoscale Res Lett; 2011 Dec; 6(1):635. PubMed ID: 22192726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices.
    Bauer A; Dallner M; Herrmann A; Lehnhardt T; Kamp M; Höfling S; Worschech L; Forchel A
    Nanotechnology; 2010 Nov; 21(45):455603. PubMed ID: 20947950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectrically-Cooled InAs/GaSb Type-II Superlattice Detectors as an Alternative to HgCdTe in a Real-Time Mid-Infrared Backscattering Spectroscopy System.
    Müller R; Haertelt M; Niemasz J; Schwarz K; Daumer V; Flores YV; Ostendorf R; Rehm R
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33352960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of an InSb photodetector on Si via heteroepitaxy for the mid-infrared wavelength region.
    Jia BW; Tan KH; Loke WK; Wicaksono S; Yoon SF
    Opt Express; 2018 Mar; 26(6):7227-7234. PubMed ID: 29609408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Anodic Vulcanization-Pretreated Gated P
    Sun J; Li N; Jia QX; Zhang X; Jiang DW; Wang GW; Niu ZC
    Nanoscale Res Lett; 2021 May; 16(1):98. PubMed ID: 34052936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.