These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38681960)
1. A hybrid brain-muscle-machine interface for stroke rehabilitation: Usability and functionality validation in a 2-week intensive intervention. Sarasola-Sanz A; Ray AM; Insausti-Delgado A; Irastorza-Landa N; Mahmoud WJ; Brötz D; Bibián-Nogueras C; Helmhold F; Zrenner C; Ziemann U; López-Larraz E; Ramos-Murguialday A Front Bioeng Biotechnol; 2024; 12():1330330. PubMed ID: 38681960 [No Abstract] [Full Text] [Related]
2. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. Sarasola-Sanz A; Irastorza-Landa N; Lopez-Larraz E; Bibian C; Helmhold F; Broetz D; Birbaumer N; Ramos-Murguialday A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():895-900. PubMed ID: 28813934 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Control of a Multi-Degree-of-Freedom Mirror Myoelectric Interface During Functional Task Training. Sarasola-Sanz A; López-Larraz E; Irastorza-Landa N; Rossi G; Figueiredo T; McIntyre J; Ramos-Murguialday A Front Neurosci; 2022; 16():764936. PubMed ID: 35360179 [TBL] [Abstract][Full Text] [Related]
4. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Grimm F; Walter A; Spüler M; Naros G; Rosenstiel W; Gharabaghi A Front Neurosci; 2016; 10():367. PubMed ID: 27555805 [TBL] [Abstract][Full Text] [Related]
5. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Brauchle D; Vukelić M; Bauer R; Gharabaghi A Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168 [TBL] [Abstract][Full Text] [Related]
6. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training. Curado MR; Cossio EG; Broetz D; Agostini M; Cho W; Brasil FL; Yilmaz O; Liberati G; Lepski G; Birbaumer N; Ramos-Murguialday A PLoS One; 2015; 10(10):e0140161. PubMed ID: 26495971 [TBL] [Abstract][Full Text] [Related]
7. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869 [TBL] [Abstract][Full Text] [Related]
8. Effects of a remote-handling-concept-based task-oriented arm training (ReHab-TOAT) on arm-hand skill performance in chronic stroke: a study protocol for a two-armed randomized controlled trial. Elmanowski J; Seelen H; Geers R; Kleynen M; Verbunt J Trials; 2023 Mar; 24(1):189. PubMed ID: 36918922 [TBL] [Abstract][Full Text] [Related]
9. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719 [TBL] [Abstract][Full Text] [Related]
10. Low Latency Estimation of Motor Intentions to Assist Reaching Movements along Multiple Sessions in Chronic Stroke Patients: A Feasibility Study. Ibáñez J; Monge-Pereira E; Molina-Rueda F; Serrano JI; Del Castillo MD; Cuesta-Gómez A; Carratalá-Tejada M; Cano-de-la-Cuerda R; Alguacil-Diego IM; Miangolarra-Page JC; Pons JL Front Neurosci; 2017; 11():126. PubMed ID: 28367109 [No Abstract] [Full Text] [Related]
11. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study. Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427 [TBL] [Abstract][Full Text] [Related]
12. Eyes-Free Tongue Gesture and Tongue Joystick Control of a Five DOF Upper-Limb Exoskeleton for Severely Disabled Individuals. Mohammadi M; Knoche H; Thøgersen M; Bengtson SH; Gull MA; Bentsen B; Gaihede M; Severinsen KE; Andreasen Struijk LNS Front Neurosci; 2021; 15():739279. PubMed ID: 34975367 [TBL] [Abstract][Full Text] [Related]
14. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response. Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293 [TBL] [Abstract][Full Text] [Related]
15. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial. Frolov AA; Mokienko O; Lyukmanov R; Biryukova E; Kotov S; Turbina L; Nadareyshvily G; Bushkova Y Front Neurosci; 2017; 11():400. PubMed ID: 28775677 [TBL] [Abstract][Full Text] [Related]
16. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. Belardinelli P; Laer L; Ortiz E; Braun C; Gharabaghi A Neuroimage Clin; 2017; 14():726-733. PubMed ID: 28409112 [TBL] [Abstract][Full Text] [Related]
17. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ramos-Murguialday A; Broetz D; Rea M; Läer L; Yilmaz O; Brasil FL; Liberati G; Curado MR; Garcia-Cossio E; Vyziotis A; Cho W; Agostini M; Soares E; Soekadar S; Caria A; Cohen LG; Birbaumer N Ann Neurol; 2013 Jul; 74(1):100-8. PubMed ID: 23494615 [TBL] [Abstract][Full Text] [Related]