BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38682270)

  • 21. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.
    Yan L; Zhao F; Li S; Hu Z; Zhao Y
    Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.
    Liang H; Zhang XB; Lv Y; Gong L; Wang R; Zhu X; Yang R; Tan W
    Acc Chem Res; 2014 Jun; 47(6):1891-901. PubMed ID: 24780000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optically active organic and inorganic nanomaterials for biological imaging applications: A review.
    Sowmiya P; Dhas TS; Inbakandan D; Anandakumar N; Nalini S; Suganya KSU; Remya RR; Karthick V; Kumar CMV
    Micron; 2023 Sep; 172():103486. PubMed ID: 37262930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks.
    Iavicoli I; Leso V; Beezhold DH; Shvedova AA
    Toxicol Appl Pharmacol; 2017 Aug; 329():96-111. PubMed ID: 28554660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on potential applications and toxicity analysis of green synthesized nanoparticles.
    Garg R; Rani P; Garg R; Eddy NO
    Turk J Chem; 2021; 45(6):1690-1706. PubMed ID: 38144602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations.
    Gupta D; Boora A; Thakur A; Gupta TK
    Environ Res; 2023 Aug; 231(Pt 3):116316. PubMed ID: 37270084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles.
    Canaparo R; Foglietta F; Limongi T; Serpe L
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular modeling in structural nano-toxicology: interactions of nano-particles with nano-machinery of cells.
    Yanamala N; Kagan VE; Shvedova AA
    Adv Drug Deliv Rev; 2013 Dec; 65(15):2070-7. PubMed ID: 23726945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Insights into the Biological Response Triggered by Dextran-Coated Maghemite Nanoparticles in Pancreatic Cancer Cells and Their Potential for Theranostic Applications.
    Balas M; Predoi D; Burtea C; Dinischiotu A
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Health hazards associated with nanomaterials.
    Pattan G; Kaul G
    Toxicol Ind Health; 2014 Jul; 30(6):499-519. PubMed ID: 23012342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational approaches to cell-nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity.
    Ding HM; Ma YQ
    Nanoscale Horiz; 2018 Jan; 3(1):6-27. PubMed ID: 32254106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.
    Wu YL; Putcha N; Ng KW; Leong DT; Lim CT; Loo SC; Chen X
    Acc Chem Res; 2013 Mar; 46(3):782-91. PubMed ID: 23194178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knowledge gaps between nanotoxicological research and nanomaterial safety.
    Hu X; Li D; Gao Y; Mu L; Zhou Q
    Environ Int; 2016 Sep; 94():8-23. PubMed ID: 27203780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects.
    Koul B; Poonia AK; Yadav D; Jin JO
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34203733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment.
    Bergamaschi E; Bussolati O; Magrini A; Bottini M; Migliore L; Bellucci S; Iavicoli I; Bergamaschi A
    Int J Immunopathol Pharmacol; 2006; 19(4 Suppl):3-10. PubMed ID: 17291399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers?
    Azarnezhad A; Samadian H; Jaymand M; Sobhani M; Ahmadi A
    Crit Rev Toxicol; 2020 Feb; 50(2):148-176. PubMed ID: 32053030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends.
    Bordin ER; Ramsdorf WA; Lotti Domingos LM; de Souza Miranda LP; Mattoso Filho NP; Cestari MM
    J Environ Manage; 2024 Jan; 349():119396. PubMed ID: 37890295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review.
    Muddapur UM; Alshehri S; Ghoneim MM; Mahnashi MH; Alshahrani MA; Khan AA; Iqubal SMS; Bahafi A; More SS; Shaikh IA; Mannasaheb BA; Othman N; Maqbul MS; Ahmad MZ
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.