BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38682423)

  • 1. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals.
    Liang Q; Xia X; Sun X; Yu D; Huang X; Han G; Mugo SM; Chen W; Zhang Q
    Adv Sci (Weinh); 2022 May; 9(16):e2201059. PubMed ID: 35362243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing.
    Cui Y; Zhang F; Chen G; Yao L; Zhang N; Liu Z; Li Q; Zhang F; Cui Z; Zhang K; Li P; Cheng Y; Zhang S; Chen X
    Adv Mater; 2021 Aug; 33(34):e2100221. PubMed ID: 34278616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.
    Hassarati RT; Marcal H; John L; Foster R; Green RA
    J Biomed Mater Res B Appl Biomater; 2016 May; 104(4):712-22. PubMed ID: 26248597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
    Keogh C
    Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-Integrated Multimodal Response as a Wearable and Implantable Bidirectional Interface for Biosensor and Therapeutic Electrostimulation.
    Sun J; Wu X; Xiao J; Zhang Y; Ding J; Jiang J; Chen Z; Liu X; Wei D; Zhou L; Fan H
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5897-5909. PubMed ID: 36656061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogel-based neurostimulation electrodes to activate endogenous neural precursor cells.
    Chen T; Lau KSK; Hong SH; Shi HTH; Iwasa SN; Chen JXM; Li T; Morrison T; Kalia SK; Popovic MR; Morshead CM; Naguib HE
    Acta Biomater; 2023 Nov; 171():392-405. PubMed ID: 37683963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording.
    Ding J; Chen Z; Liu X; Tian Y; Jiang J; Qiao Z; Zhang Y; Xiao Z; Wei D; Sun J; Luo F; Zhou L; Fan H
    Mater Horiz; 2022 Aug; 9(8):2215-2225. PubMed ID: 35723211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Conductive and Transparent Hydrogels for Recording Brain Neural Signals and Neuromodulation.
    Liang Q; Shen Z; Sun X; Yu D; Liu K; Mugo SM; Chen W; Wang D; Zhang Q
    Adv Mater; 2023 Mar; 35(9):e2211159. PubMed ID: 36563409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording.
    Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics.
    Han IK; Song KI; Jung SM; Jo Y; Kwon J; Chung T; Yoo S; Jang J; Kim YT; Hwang DS; Kim YS
    Adv Mater; 2023 Jan; 35(4):e2203431. PubMed ID: 35816086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable Conductive Hydrogels with Tunable Degradability as Novel Implantable Bioelectrodes.
    Park J; Lee S; Lee M; Kim HS; Lee JY
    Small; 2023 May; 19(21):e2300250. PubMed ID: 36828790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface.
    Li J; Cheng Y; Gu M; Yang Z; Zhan L; Du Z
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through a Three-Dimensional Electrical Network.
    Nam J; Lim HK; Kim NH; Park JK; Kang ES; Kim YT; Heo C; Lee OS; Kim SG; Yun WS; Suh M; Kim YH
    ACS Nano; 2020 Jan; 14(1):664-675. PubMed ID: 31895542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.