These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38682562)

  • 1. Strategies to alleviate distortive phase transformations in Li-ion intercalation reactions: an example with vanadium pentoxide.
    Yaseen MW; Maman MP; Mishra S; Mohammad I; Li X
    Nanoscale; 2024 May; 16(20):9710-9727. PubMed ID: 38682562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roadblocks in Cation Diffusion Pathways: Implications of Phase Boundaries for Li-Ion Diffusivity in an Intercalation Cathode Material.
    Luo Y; De Jesus LR; Andrews JL; Parija A; Fleer N; Robles DJ; Mukherjee PP; Banerjee S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30901-30911. PubMed ID: 30106560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation reordering instead of phase transitions: Origins and implications of contrasting lithiation mechanisms in 1D ζ- and 2D α-V
    Luo Y; Rezaei S; Santos DA; Zhang Y; Handy JV; Carrillo L; Schultz BJ; Gobbato L; Pupucevski M; Wiaderek K; Charalambous H; Yakovenko A; Pharr M; Xu BX; Banerjee S
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35064084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.
    Kim JK; Senthilkumar B; Sahgong SH; Kim JH; Chi M; Kim Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7025-32. PubMed ID: 25768692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors.
    Pandey GP; Liu T; Brown E; Yang Y; Li Y; Sun XS; Fang Y; Li J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9200-10. PubMed ID: 27010675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reticular V
    Tian B; Tang W; Su C; Li Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):642-650. PubMed ID: 29256595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Mechanochemistry of Lithium Battery Electrodes.
    Muralidharan N; Brock CN; Cohn AP; Schauben D; Carter RE; Oakes L; Walker DG; Pint CL
    ACS Nano; 2017 Jun; 11(6):6243-6251. PubMed ID: 28575575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping polaronic states and lithiation gradients in individual V2O5 nanowires.
    De Jesus LR; Horrocks GA; Liang Y; Parija A; Jaye C; Wangoh L; Wang J; Fischer DA; Piper LF; Prendergast D; Banerjee S
    Nat Commun; 2016 Jun; 7():12022. PubMed ID: 27349567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathode-Electrolyte Interphase in a LiTFSI/Tetraglyme Electrolyte Promoting the Cyclability of V
    Liu X; Zarrabeitia M; Qin B; Elia GA; Passerini S
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54782-54790. PubMed ID: 33216545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Safe High-Performance All-Solid-State Lithium-Vanadium Battery with a Freestanding V
    Zhang Y; Lai J; Gong Y; Hu Y; Liu J; Sun C; Wang ZL
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34309-34316. PubMed ID: 27998115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5.
    Ma W; Zhang C; Liu C; Nan X; Fu H; Cao G
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19542-9. PubMed ID: 27400230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Li diffusion in Li-intercalation compounds.
    Van der Ven A; Bhattacharya J; Belak AA
    Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Preinserted Na Ions on Li-Ion Electrochemical Intercalation Properties of V2O5.
    Li X; Liu C; Zhang C; Fu H; Nan X; Ma W; Li Z; Wang K; Wu H; Cao G
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24629-37. PubMed ID: 27580052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadium Organometallics as an Interfacial Stabilizer for Ca
    Wang X; Bai Y; Wu F; Wu C
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23291-23302. PubMed ID: 31180199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries.
    Ma S; Wei K; Zhao Y; Qiu J; Xu R; Li H; Zhang H; Cui Y
    RSC Adv; 2024 May; 14(22):15261-15269. PubMed ID: 38741967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Preparation of V
    Liu Y; Wang Y; Zhang Y; Liang S; Pan A
    Nanoscale Res Lett; 2016 Dec; 11(1):549. PubMed ID: 27957728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.