BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38682594)

  • 1. SynDesign: web-based prime editing guide RNA design and evaluation tool for saturation genome editing.
    Park J; Yu G; Seo SY; Yang J; Kim HH
    Nucleic Acids Res; 2024 Apr; ():. PubMed ID: 38682594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs).
    Jin S; Lin Q; Gao Q; Gao C
    Nat Protoc; 2023 Mar; 18(3):831-853. PubMed ID: 36434096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MOSAIC enables
    Hsu JY; Lam KC; Shih J; Pinello L; Joung JK
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pegIT - a web-based design tool for prime editing.
    Anderson MV; Haldrup J; Thomsen EA; Wolff JH; Mikkelsen JG
    Nucleic Acids Res; 2021 Jul; 49(W1):W505-W509. PubMed ID: 34060619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the efficiency of prime editing guide RNAs in human cells.
    Kim HK; Yu G; Park J; Min S; Lee S; Yoon S; Kim HH
    Nat Biotechnol; 2021 Feb; 39(2):198-206. PubMed ID: 32958957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prime Editing Guide RNA Design Automation Using PINE-CONE.
    Standage-Beier K; Tekel SJ; Brafman DA; Wang X
    ACS Synth Biol; 2021 Feb; 10(2):422-427. PubMed ID: 33464043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
    Cornean A; Gierten J; Welz B; Mateo JL; Thumberger T; Wittbrodt J
    Elife; 2022 Apr; 11():. PubMed ID: 35373735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing.
    Hwang GH; Jeong YK; Habib O; Hong SA; Lim K; Kim JS; Bae S
    Nucleic Acids Res; 2021 Jul; 49(W1):W499-W504. PubMed ID: 33939828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting prime editing efficiency and product purity by deep learning.
    Mathis N; Allam A; Kissling L; Marquart KF; Schmidheini L; Solari C; Balázs Z; Krauthammer M; Schwank G
    Nat Biotechnol; 2023 Aug; 41(8):1151-1159. PubMed ID: 36646933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved prime editing allows for routine predictable gene editing in Physcomitrium patens.
    Perroud PF; Guyon-Debast A; Casacuberta JM; Paul W; Pichon JP; Comeau D; Nogué F
    J Exp Bot; 2023 Oct; 74(19):6176-6187. PubMed ID: 37243510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered pegRNAs improve prime editing efficiency.
    Nelson JW; Randolph PB; Shen SP; Everette KA; Chen PJ; Anzalone AV; An M; Newby GA; Chen JC; Hsu A; Liu DR
    Nat Biotechnol; 2022 Mar; 40(3):402-410. PubMed ID: 34608327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide specificity of prime editors in plants.
    Jin S; Lin Q; Luo Y; Zhu Z; Liu G; Li Y; Chen K; Qiu JL; Gao C
    Nat Biotechnol; 2021 Oct; 39(10):1292-1299. PubMed ID: 33859403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy-Prime: a machine learning-based prime editor design tool.
    Li Y; Chen J; Tsai SQ; Cheng Y
    Genome Biol; 2021 Aug; 22(1):235. PubMed ID: 34412673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency prime editing with optimized, paired pegRNAs in plants.
    Lin Q; Jin S; Zong Y; Yu H; Zhu Z; Liu G; Kou L; Wang Y; Qiu JL; Li J; Gao C
    Nat Biotechnol; 2021 Aug; 39(8):923-927. PubMed ID: 33767395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency.
    Ponnienselvan K; Liu P; Nyalile T; Oikemus S; Maitland SA; Lawson ND; Luban J; Wolfe SA
    Nucleic Acids Res; 2023 Jul; 51(13):6966-6980. PubMed ID: 37246708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA.
    Huang S; Zhang Z; Tao W; Liu Y; Li X; Wang X; Harati J; Wang PY; Huang X; Lin CP
    Mol Ther; 2022 Sep; 30(9):2923-2932. PubMed ID: 35799444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage-assisted evolution and protein engineering yield compact, efficient prime editors.
    Doman JL; Pandey S; Neugebauer ME; An M; Davis JR; Randolph PB; McElroy A; Gao XD; Raguram A; Richter MF; Everette KA; Banskota S; Tian K; Tao YA; Tolar J; Osborn MJ; Liu DR
    Cell; 2023 Aug; 186(18):3983-4002.e26. PubMed ID: 37657419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PrimeDesign software for rapid and simplified design of prime editing guide RNAs.
    Hsu JY; Grünewald J; Szalay R; Shih J; Anzalone AV; Lam KC; Shen MW; Petri K; Liu DR; Joung JK; Pinello L
    Nat Commun; 2021 Feb; 12(1):1034. PubMed ID: 33589617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning prediction of prime editing efficiency across diverse chromatin contexts.
    Mathis N; Allam A; Tálas A; Kissling L; Benvenuto E; Schmidheini L; Schep R; Damodharan T; Balázs Z; Janjuha S; Ioannidi EI; Böck D; van Steensel B; Krauthammer M; Schwank G
    Nat Biotechnol; 2024 Jun; ():. PubMed ID: 38907037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of efficiencies for diverse prime editing systems in multiple cell types.
    Yu G; Kim HK; Park J; Kwak H; Cheong Y; Kim D; Kim J; Kim J; Kim HH
    Cell; 2023 May; 186(10):2256-2272.e23. PubMed ID: 37119812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.