These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38682609)

  • 1. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical devices.
    Amini A; Guijt RM; Themelis T; De Vos J; Eeltink S
    J Chromatogr A; 2023 Mar; 1692():463842. PubMed ID: 36745962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printing of transparent bio-microfluidic devices in PEG-DA.
    Urrios A; Parra-Cabrera C; Bhattacharjee N; Gonzalez-Suarez AM; Rigat-Brugarolas LG; Nallapatti U; Samitier J; DeForest CA; Posas F; Garcia-Cordero JL; Folch A
    Lab Chip; 2016 Jun; 16(12):2287-94. PubMed ID: 27217203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Manufacturing of Functional Ready-to-Use Microfluidic Systems.
    Karamzadeh V; Sohrabi-Kashani A; Shen M; Juncker D
    Adv Mater; 2023 Nov; 35(47):e2303867. PubMed ID: 37531202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations.
    Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer.
    Karamzadeh V; Shen ML; Ravanbakhsh H; Sohrabi-Kashani A; Okhovatian S; Savoji H; Radisic M; Juncker D
    Adv Healthc Mater; 2024 Apr; 13(9):e2303708. PubMed ID: 37990819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of 3D-printed molds for polydimethylsiloxane-based microfluidic devices using a liquid crystal display-based vat photopolymerization process: printing quality, drug response and 3D invasion cell culture assays.
    Poskus MD; Wang T; Deng Y; Borcherding S; Atkinson J; Zervantonakis IK
    Microsyst Nanoeng; 2023; 9():140. PubMed ID: 37954040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital Manufacturing for Microfluidics.
    Naderi A; Bhattacharjee N; Folch A
    Annu Rev Biomed Eng; 2019 Jun; 21():325-364. PubMed ID: 31167099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.