These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 38682690)
21. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura. MacMillan HA; Schou MF; Kristensen TN; Overgaard J Biol Lett; 2016 May; 12(5):. PubMed ID: 27165627 [TBL] [Abstract][Full Text] [Related]
22. Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth. Li NG Cryobiology; 2016 Oct; 73(2):221-5. PubMed ID: 27424094 [TBL] [Abstract][Full Text] [Related]
23. Warm periods in repeated cold stresses protect Drosophila against ionoregulatory collapse, chilling injury, and reproductive deficits. El-Saadi MI; Ritchie MW; Davis HE; MacMillan HA J Insect Physiol; 2020; 123():104055. PubMed ID: 32380094 [TBL] [Abstract][Full Text] [Related]
24. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer. Vu HM; Duman JG J Exp Biol; 2017 Aug; 220(Pt 15):2726-2732. PubMed ID: 28768748 [TBL] [Abstract][Full Text] [Related]
25. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in Yerushalmi GY; Misyura L; MacMillan HA; Donini A J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271 [TBL] [Abstract][Full Text] [Related]
26. Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster. Yerushalmi GY; Misyura L; Donini A; MacMillan HA J Insect Physiol; 2016 Dec; 95():89-97. PubMed ID: 27642001 [TBL] [Abstract][Full Text] [Related]
27. Seasonal change of cold hardiness in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Khani A; Moharramipour S Pak J Biol Sci; 2007 Aug; 10(15):2591-4. PubMed ID: 19070137 [TBL] [Abstract][Full Text] [Related]
28. An impressive capacity for cold tolerance plasticity protects against ionoregulatory collapse in the disease vector Jass A; Yerushalmi GY; Davis HE; Donini A; MacMillan HA J Exp Biol; 2019 Dec; 222(Pt 24):. PubMed ID: 31732503 [TBL] [Abstract][Full Text] [Related]
29. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study. Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488 [TBL] [Abstract][Full Text] [Related]
30. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae). Mohammadzadeh M; Izadi H J Therm Biol; 2018 Jan; 71():24-31. PubMed ID: 29301697 [TBL] [Abstract][Full Text] [Related]
32. Rapid Cold-Hardening of a Subtropical Species, Maruca vitrata (Lepidoptera: Crambidae), Accompanies Hypertrehalosemia by Upregulating Trehalose-6-Phosphate Synthase. Kim Y; Lee DW; Jung JK Environ Entomol; 2017 Dec; 46(6):1432-1438. PubMed ID: 29029081 [TBL] [Abstract][Full Text] [Related]
33. Metabolism and cold tolerance of overwintering adult mountain pine beetles (Dendroctonus ponderosae): evidence of facultative diapause? Lester JD; Irwin JT J Insect Physiol; 2012 Jun; 58(6):808-15. PubMed ID: 22426083 [TBL] [Abstract][Full Text] [Related]
34. Unveiling winter survival strategies: physiological and metabolic responses to cold stress of Monochamus saltuarius larvae during overwintering. Shi F; Xing Y; Niu Y; Cheng L; Xu Y; Li X; Ren L; Zong S; Tao J Pest Manag Sci; 2024 Nov; 80(11):5656-5671. PubMed ID: 38979967 [TBL] [Abstract][Full Text] [Related]
35. Reversing sodium differentials between the hemolymph and hindgut speeds chill coma recovery but reduces survival in the fall field cricket, Gryllus pennsylvanicus. Lebenzon JE; Des Marteaux LE; Sinclair BJ Comp Biochem Physiol A Mol Integr Physiol; 2020 Jun; 244():110699. PubMed ID: 32247007 [TBL] [Abstract][Full Text] [Related]
36. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. Worland MR; Block W J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994 [TBL] [Abstract][Full Text] [Related]
37. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling. MacMillan HA; Findsen A; Pedersen TH; Overgaard J J Exp Biol; 2014 Aug; 217(Pt 16):2930-8. PubMed ID: 24902750 [TBL] [Abstract][Full Text] [Related]
38. Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. Thompson KM; Huber DPW; Murray BW PLoS One; 2020; 15(1):e0227203. PubMed ID: 31914144 [TBL] [Abstract][Full Text] [Related]
39. Is the strategy for cold hardiness in insects determined by their water balance? A study on two closely related families of beetles: Cerambycidae and Chrysomelidae. Zachariassen KE; Li NG; Laugsand AE; Kristiansen E; Pedersen SA J Comp Physiol B; 2008 Nov; 178(8):977-84. PubMed ID: 18563418 [TBL] [Abstract][Full Text] [Related]