These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38682922)

  • 1. Construction of Out-of-Equilibrium Metabolic Networks in Nano- and Micrometer-Sized Vesicles.
    Coenradij J; Bailoni E; Poolman B
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38682922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
    Park YH; Lee DH; Um E; Park JK
    Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents.
    Dezi M; Di Cicco A; Bassereau P; Lévy D
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7276-81. PubMed ID: 23589883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock.
    Motta I; Gohlke A; Adrien V; Li F; Gardavot H; Rothman JE; Pincet F
    Langmuir; 2015 Jun; 31(25):7091-9. PubMed ID: 26038815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides.
    Kubiak J; Brewer J; Hansen S; Bagatolli LA
    Biophys J; 2011 Feb; 100(4):978-86. PubMed ID: 21320442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles.
    Varnier A; Kermarrec F; Blesneac I; Moreau C; Liguori L; Lenormand JL; Picollet-D'hahan N
    J Membr Biol; 2010 Feb; 233(1-3):85-92. PubMed ID: 20135103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-protein and protein-lipid interactions in domain-assembly: lessons from giant unilamellar vesicles.
    Kahya N
    Biochim Biophys Acta; 2010 Jul; 1798(7):1392-8. PubMed ID: 20211599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality.
    Carvalho K; Ramos L; Roy C; Picart C
    Biophys J; 2008 Nov; 95(9):4348-60. PubMed ID: 18502807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From LUVs to GUVs─How to Cover Micrometer-Sized Pores with Membranes.
    Kramer K; Sari M; Schulze K; Flegel H; Stehr M; Mey I; Janshoff A; Steinem C
    J Phys Chem B; 2022 Oct; 126(41):8233-8244. PubMed ID: 36210780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence Monitoring of Peptide Transport Pathways into Large and Giant Vesicles by Supramolecular Host-Dye Reporter Pairs.
    Barba-Bon A; Pan YC; Biedermann F; Guo DS; Nau WM; Hennig A
    J Am Chem Soc; 2019 Dec; 141(51):20137-20145. PubMed ID: 31739668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sizing of giant unilamellar vesicles using a metal mesh with a high opening ratio.
    Shinohara K; Okita T; Tsugane M; Kondo T; Suzuki H
    Chem Phys Lipids; 2021 Nov; 241():105148. PubMed ID: 34600914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles.
    Shuma ML; Moghal MMR; Yamazaki M
    Biochemistry; 2020 May; 59(18):1780-1790. PubMed ID: 32285663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles.
    Waeterschoot J; Gosselé W; Alizadeh Zeinabad H; Lammertyn J; Koos E; Casadevall I Solvas X
    Adv Sci (Weinh); 2023 Dec; 10(34):e2302461. PubMed ID: 37807811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles.
    Valkenier H; López Mora N; Kros A; Davis AP
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2137-41. PubMed ID: 25556546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.