BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38682940)

  • 1. Long-Term Mouse Spinal Cord Organotypic Slice Culture as a Platform for Validating Cell Transplantation in Spinal Cord Injury.
    Merighi F; De Vincentiis S; Onorati M; Raffa V
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38682940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury.
    Butenschön J; Zimmermann T; Schmarowski N; Nitsch R; Fackelmeier B; Friedemann K; Radyushkin K; Baumgart J; Lutz B; Leschik J
    Stem Cell Res Ther; 2016 Jan; 7():11. PubMed ID: 26762640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells.
    Fujimoto Y; Abematsu M; Falk A; Tsujimura K; Sanosaka T; Juliandi B; Semi K; Namihira M; Komiya S; Smith A; Nakashima K
    Stem Cells; 2012 Jun; 30(6):1163-73. PubMed ID: 22419556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermal neural crest stem cell-derived glia enhance neurotrophic elements in an ex vivo model of spinal cord injury.
    Pandamooz S; Salehi MS; Zibaii MI; Ahmadiani A; Nabiuni M; Dargahi L
    J Cell Biochem; 2018 Apr; 119(4):3486-3496. PubMed ID: 29143997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury.
    Lu P; Graham L; Wang Y; Wu D; Tuszynski M
    J Vis Exp; 2014 Jul; (89):e50641. PubMed ID: 25145787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved method for generating human spinal cord neural stem cells.
    Li Y; Kumamaru H; Vokes TJ; Tran AN; Shevinsky CA; Graham L; Archuleta K; Limon KR; Lu P; Blesch A; Tuszynski MH; Brock JH
    Exp Neurol; 2024 Jun; 376():114779. PubMed ID: 38621449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats.
    Kim H; Zahir T; Tator CH; Shoichet MS
    PLoS One; 2011; 6(6):e21744. PubMed ID: 21738784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture.
    Cho JS; Park HW; Park SK; Roh S; Kang SK; Paik KS; Chang MS
    Neurosci Lett; 2009 Apr; 454(1):43-8. PubMed ID: 19429051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Epidermal Neural Crest Stem Cells in Organotypic Spinal Cord Slice Culture Platform.
    Pandamooz S; Salehi MS; Nabiuni M; Dargahi L; Pourghasem M
    Folia Biol (Praha); 2016; 62(6):263-267. PubMed ID: 28189150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening.
    Pandamooz S; Nabiuni M; Miyan J; Ahmadiani A; Dargahi L
    Mol Neurobiol; 2016 Sep; 53(7):4659-74. PubMed ID: 26310972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury.
    Levi AD; Anderson KD; Okonkwo DO; Park P; Bryce TN; Kurpad SN; Aarabi B; Hsieh J; Gant K
    J Neurotrauma; 2019 Mar; 36(6):891-902. PubMed ID: 30180779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG
    Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.
    Emgård M; Piao J; Aineskog H; Liu J; Calzarossa C; Odeberg J; Holmberg L; Samuelsson EB; Bezubik B; Vincent PH; Falci SP; Seiger Å; Åkesson E; Sundström E
    Exp Neurol; 2014 Mar; 253():138-45. PubMed ID: 24412492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing.
    Nagoshi N; Khazaei M; Ahlfors JE; Ahuja CS; Nori S; Wang J; Shibata S; Fehlings MG
    Stem Cells Transl Med; 2018 Nov; 7(11):806-818. PubMed ID: 30085415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural stem cell transplantation in experimental contusive model of spinal cord injury.
    Carelli S; Giallongo T; Gerace C; De Angelis A; Basso MD; Di Giulio AM; Gorio A
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25548937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating Combinatorial Approaches to Encourage Targeted Neural Stem/Progenitor Cell Integration Following Transplantation in Spinal Cord Injury.
    Pieczonka K; Fehlings MG
    Stem Cells Transl Med; 2023 Apr; 12(4):207-214. PubMed ID: 36892546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Damaged Spinal Cord Is a Suitable Target for Stem Cell Transplantation.
    Curt A; Hsieh J; Schubert M; Hupp M; Friedl S; Freund P; Huber E; Pfyffer D; Sutter R; Jutzeler C; Wüthrich RP; Min K; Casha S; Fehlings MG; Guzman R
    Neurorehabil Neural Repair; 2020 Aug; 34(8):758-768. PubMed ID: 32698674
    [No Abstract]   [Full Text] [Related]  

  • 19. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury.
    Kojima K; Miyoshi H; Nagoshi N; Kohyama J; Itakura G; Kawabata S; Ozaki M; Iida T; Sugai K; Ito S; Fukuzawa R; Yasutake K; Renault-Mihara F; Shibata S; Matsumoto M; Nakamura M; Okano H
    Stem Cells Transl Med; 2019 Mar; 8(3):260-270. PubMed ID: 30485733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis.
    Yousefifard M; Rahimi-Movaghar V; Nasirinezhad F; Baikpour M; Safari S; Saadat S; Moghadas Jafari A; Asady H; Razavi Tousi SM; Hosseini M
    Neuroscience; 2016 May; 322():377-97. PubMed ID: 26917272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.