These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38682941)
1. Magnon Orbital Nernst Effect in Honeycomb Antiferromagnets without Spin-Orbit Coupling. Go G; An D; Lee HW; Kim SK Nano Lett; 2024 May; 24(20):5968-5974. PubMed ID: 38682941 [TBL] [Abstract][Full Text] [Related]
2. Topological magnon modes on honeycomb lattice with coupling textures. Huang H; Kariyado T; Hu X Sci Rep; 2022 Apr; 12(1):6257. PubMed ID: 35428809 [TBL] [Abstract][Full Text] [Related]
4. Thermal Hall Effect, Spin Nernst Effect, and Spin Density Induced by a Thermal Gradient in Collinear Ferrimagnets from Magnon-Phonon Interaction. Park S; Nagaosa N; Yang BJ Nano Lett; 2020 Apr; 20(4):2741-2746. PubMed ID: 32101440 [TBL] [Abstract][Full Text] [Related]
5. Magnonic Floquet Quantum Spin Hall Insulator in Bilayer Collinear Antiferromagnets. Owerre SA Sci Rep; 2019 May; 9(1):7197. PubMed ID: 31076602 [TBL] [Abstract][Full Text] [Related]
6. Chirality-selective topological magnon phase transition induced by interplay of anisotropic exchange interactions in honeycomb ferromagnet. Ni JY; Zheng XM; Wei PT; Liu DY; Zou LJ J Phys Condens Matter; 2024 Mar; 36(25):. PubMed ID: 38457834 [TBL] [Abstract][Full Text] [Related]
7. Piezoelectric Strain-Controlled Magnon Spin Current Transport in an Antiferromagnet. Zhou Y; Guo T; Qiao L; Wang Q; Zhu M; Zhang J; Liu Q; Zhao M; Wan C; He W; Bai H; Han L; Huang L; Chen R; Zhao Y; Han X; Pan F; Song C Nano Lett; 2022 Jun; 22(12):4646-4653. PubMed ID: 35583209 [TBL] [Abstract][Full Text] [Related]
8. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets. Owerre SA J Phys Condens Matter; 2016 Nov; 28(47):47LT02. PubMed ID: 27636333 [TBL] [Abstract][Full Text] [Related]
9. Spin Nernst Effect of Magnons in Collinear Antiferromagnets. Cheng R; Okamoto S; Xiao D Phys Rev Lett; 2016 Nov; 117(21):217202. PubMed ID: 27911532 [TBL] [Abstract][Full Text] [Related]
10. A first theoretical realization of honeycomb topological magnon insulator. Owerre SA J Phys Condens Matter; 2016 Sep; 28(38):386001. PubMed ID: 27437569 [TBL] [Abstract][Full Text] [Related]
12. Topological magnons in the honeycomb-kagome lattice. Li K J Phys Condens Matter; 2022 Oct; 34(50):. PubMed ID: 36261036 [TBL] [Abstract][Full Text] [Related]
13. Magnon Spin Relaxation and Spin Hall Effect Due to the Dipolar Interaction in Antiferromagnetic Insulators. Shen K Phys Rev Lett; 2020 Feb; 124(7):077201. PubMed ID: 32142313 [TBL] [Abstract][Full Text] [Related]
14. Acoustomagnonic Spin Hall Effect in Honeycomb Antiferromagnets. Sano R; Ominato Y; Matsuo M Phys Rev Lett; 2024 Jun; 132(23):236302. PubMed ID: 38905670 [TBL] [Abstract][Full Text] [Related]
15. Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice. Takeda H; Kawano M; Tamura K; Akazawa M; Yan J; Waki T; Nakamura H; Sato K; Narumi Y; Hagiwara M; Yamashita M; Hotta C Nat Commun; 2024 Jan; 15(1):566. PubMed ID: 38263303 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear Topological Magnon Spin Hall Effect. Jin Z; Yao X; Wang Z; Yuan HY; Zeng Z; Wang W; Cao Y; Yan P Phys Rev Lett; 2023 Oct; 131(16):166704. PubMed ID: 37925727 [TBL] [Abstract][Full Text] [Related]
17. Electric field control of magnon spin currents in an antiferromagnetic insulator. Liu C; Luo Y; Hong D; Zhang SS; Saglam H; Li Y; Lin Y; Fisher B; Pearson JE; Jiang JS; Zhou H; Wen J; Hoffmann A; Bhattacharya A Sci Adv; 2021 Oct; 7(40):eabg1669. PubMed ID: 34586846 [TBL] [Abstract][Full Text] [Related]