These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice. Zhang XF; He YC; Eggert S; Moessner R; Pollmann F Phys Rev Lett; 2018 Mar; 120(11):115702. PubMed ID: 29601746 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous time-reversal symmetry breaking for spinless fermions on a triangular lattice. Tieleman O; Dutta O; Lewenstein M; Eckardt A Phys Rev Lett; 2013 Mar; 110(9):096405. PubMed ID: 23496733 [TBL] [Abstract][Full Text] [Related]
8. Extended Bose-Hubbard models with ultracold magnetic atoms. Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454 [TBL] [Abstract][Full Text] [Related]
9. Spectral and entanglement properties of the bosonic Haldane insulator. Ejima S; Lange F; Fehske H Phys Rev Lett; 2014 Jul; 113(2):020401. PubMed ID: 25062142 [TBL] [Abstract][Full Text] [Related]
10. Quantum Critical Behavior of Entanglement in Lattice Bosons with Cavity-Mediated Long-Range Interactions. Sharma S; Jäger SB; Kraus R; Roscilde T; Morigi G Phys Rev Lett; 2022 Sep; 129(14):143001. PubMed ID: 36240423 [TBL] [Abstract][Full Text] [Related]
11. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables. Łącki M; Damski B; Zakrzewski J Sci Rep; 2016 Dec; 6():38340. PubMed ID: 27910915 [TBL] [Abstract][Full Text] [Related]
12. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Haller E; Hart R; Mark MJ; Danzl JG; Reichsöllner L; Gustavsson M; Dalmonte M; Pupillo G; Nägerl HC Nature; 2010 Jul; 466(7306):597-600. PubMed ID: 20671704 [TBL] [Abstract][Full Text] [Related]
13. Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice. Parameswaran SA; Kimchi I; Turner AM; Stamper-Kurn DM; Vishwanath A Phys Rev Lett; 2013 Mar; 110(12):125301. PubMed ID: 25166814 [TBL] [Abstract][Full Text] [Related]
14. Extended Bose-Hubbard model with dipolar excitons. Lagoin C; Bhattacharya U; Grass T; Chhajlany RW; Salamon T; Baldwin K; Pfeiffer L; Lewenstein M; Holzmann M; Dubin F Nature; 2022 Sep; 609(7927):485-489. PubMed ID: 36104551 [TBL] [Abstract][Full Text] [Related]
15. Magnon edge states in the hardcore- Bose-Hubbard model. Owerre SA J Phys Condens Matter; 2016 Nov; 28(43):436003. PubMed ID: 27603092 [TBL] [Abstract][Full Text] [Related]
16. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Gemelke N; Zhang X; Hung CL; Chin C Nature; 2009 Aug; 460(7258):995-8. PubMed ID: 19693080 [TBL] [Abstract][Full Text] [Related]
17. Landau-Forbidden Quantum Criticality in Rydberg Quantum Simulators. Lee JY; Ramette J; Metlitski MA; Vuletić V; Ho WW; Choi S Phys Rev Lett; 2023 Aug; 131(8):083601. PubMed ID: 37683144 [TBL] [Abstract][Full Text] [Related]
18. Disordered Supersolids in the Extended Bose-Hubbard Model. Lin F; Maier TA; Scarola VW Sci Rep; 2017 Oct; 7(1):12752. PubMed ID: 28986536 [TBL] [Abstract][Full Text] [Related]
19. Strongly Interacting Bosons in a Two-Dimensional Quasicrystal Lattice. Gautier R; Yao H; Sanchez-Palencia L Phys Rev Lett; 2021 Mar; 126(11):110401. PubMed ID: 33798372 [TBL] [Abstract][Full Text] [Related]
20. Quantum phases of the extended Bose-Hubbard hamiltonian: possibility of a supersolid state of cold atoms in optical lattices. Scarola VW; Das Sarma S Phys Rev Lett; 2005 Jul; 95(3):033003. PubMed ID: 16090740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]