These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38683007)

  • 1. Positive-Negative Tunable Coefficients of Friction in Superlubric Contacts.
    Wu Z; Li X; Peng D; Zheng Q
    Phys Rev Lett; 2024 Apr; 132(15):156201. PubMed ID: 38683007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative Friction Coefficients in Superlubric Graphite-Hexagonal Boron Nitride Heterojunctions.
    Mandelli D; Ouyang W; Hod O; Urbakh M
    Phys Rev Lett; 2019 Feb; 122(7):076102. PubMed ID: 30848642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlubricity between Graphite Layers in Ultrahigh Vacuum.
    Liu Y; Wang K; Xu Q; Zhang J; Hu Y; Ma T; Zheng Q; Luo J
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43167-43172. PubMed ID: 32840104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loading Mode-Induced Enhancement in Friction for Microscale Graphite/Hexagonal Boron Nitride Heterojunction.
    Zhang Y; Li J; Wang Y; Nie J; Wang C; Tian K; Ma M
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5308-5315. PubMed ID: 38235683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of superlubric sliding on graphite.
    de Wijn AS; Fusco C; Fasolino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046105. PubMed ID: 20481784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlubric polycrystalline graphene interfaces.
    Gao X; Ouyang W; Urbakh M; Hod O
    Nat Commun; 2021 Sep; 12(1):5694. PubMed ID: 34584082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlubric sliding of graphene nanoflakes on graphene.
    Feng X; Kwon S; Park JY; Salmeron M
    ACS Nano; 2013 Feb; 7(2):1718-24. PubMed ID: 23327483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of coefficient of friction for self-expanding stent-grafts.
    Vad S; Eskinazi A; Corbett T; McGloughlin T; Vande Geest JP
    J Biomech Eng; 2010 Dec; 132(12):121007. PubMed ID: 21142321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a Microscale Superlubric Graphite Interface.
    Wang K; Qu C; Wang J; Quan B; Zheng Q
    Phys Rev Lett; 2020 Jul; 125(2):026101. PubMed ID: 32701344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of forces applied by individual fingers engaged in restraint of an active object.
    Burstedt MK; Birznieks I; Edin BB; Johansson RS
    J Neurophysiol; 1997 Jul; 78(1):117-28. PubMed ID: 9242266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces.
    Hansson PM; Claesson PM; Swerin A; Briscoe WH; Schoelkopf J; Gane PA; Thormann E
    Phys Chem Chem Phys; 2013 Nov; 15(41):17893-902. PubMed ID: 24056733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of atomic friction: from sticking atoms to superlubric sliding.
    Hölscher H; Schirmeisen A; Schwarz UD
    Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1869):1383-404. PubMed ID: 18156127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative friction coefficient in microscale graphite/mica layered heterojunctions.
    Liu B; Wang J; Zhao S; Qu C; Liu Y; Ma L; Zhang Z; Liu K; Zheng Q; Ma M
    Sci Adv; 2020 Apr; 6(16):eaaz6787. PubMed ID: 32494618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forces and stresses acting on fusion pore membrane during secretion.
    Tajparast M; Glavinović MI
    Biochim Biophys Acta; 2009 May; 1788(5):1009-23. PubMed ID: 19366587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts.
    McGraw JD; Niguès A; Chennevière A; Siria A
    Nano Lett; 2017 Oct; 17(10):6335-6339. PubMed ID: 28930467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and physical origins of friction on surfaces with atomic steps.
    Chen Z; Khajeh A; Martini A; Kim SH
    Sci Adv; 2019 Aug; 5(8):eaaw0513. PubMed ID: 31448329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.