These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38683106)

  • 1. Recent advances in photoelectrochemical hydrogen production using I-III-VI quantum dots.
    Lee HC; Park JH; In SI; Yang J
    Nanoscale; 2024 May; 16(19):9295-9310. PubMed ID: 38683106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring Eco-Friendly Colloidal Quantum Dots for Photoelectrochemical Hydrogen Generation.
    Li Z; Channa AI; Wang ZM; Tong X
    Small; 2023 Dec; 19(50):e2305146. PubMed ID: 37632304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications.
    Zhao H; Liu J; Vidal F; Vomiero A; Rosei F
    Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared heavy-metal-free SnSe/ZnSe quantum dots for efficient photoelectrochemical hydrogen generation.
    Ren S; Wang M; Wang X; Han G; Zhang Y; Zhao H; Vomiero A
    Nanoscale; 2021 Feb; 13(6):3519-3527. PubMed ID: 33566048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution.
    Zhang H; Liu J; Besteiro LV; Selopal GS; Zhao Z; Sun S; Rosei F
    Small; 2024 May; 20(22):e2306203. PubMed ID: 38128031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Environment-Friendly Colloidal Core/Shell Quantum Dots for High-Efficiency Solar-Driven Photoelectrochemical Hydrogen Evolution.
    Long Z; Tong X; Wang R; Channa AI; Li X; You Y; Xia L; Cai M; Zhao H; Wang ZM
    ChemSusChem; 2022 May; 15(10):e202200346. PubMed ID: 35319829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic CuIn
    Kim J; Jang YJ; Baek W; Lee AR; Kim JY; Hyeon T; Lee JS
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):603-610. PubMed ID: 34958547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the Optoelectronic Properties of Quasi-type II CuInS
    Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots.
    Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Stoichiometry Control of Colloidal Heterostructured Quantum Dots for High-Performance Photoelectrochemical Hydrogen Generation.
    Tao Y; Tang Z; Bao D; Zhao H; Gao Z; Peng M; Zhang H; Wang K; Sun X
    Small; 2023 Apr; 19(15):e2206316. PubMed ID: 36642852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Dots, Passivation Layer and Cocatalysts for Enhanced Photoelectrochemical Hydrogen Production.
    Kim H; Choe A; Ha SB; Narejo GM; Koo SW; Han JS; Chung W; Kim JY; Yang J; In SI
    ChemSusChem; 2023 Feb; 16(3):e202201925. PubMed ID: 36382625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production.
    Zhao H; Jin L; Zhou Y; Bandar A; Fan Z; Govorov AO; Mi Z; Sun S; Rosei F; Vomiero A
    Nanotechnology; 2016 Dec; 27(49):495405. PubMed ID: 27834311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting.
    Cai M; Tong X; Zhao H; Li X; You Y; Wang R; Xia L; Zhou N; Wang L; Wang ZM
    Small; 2022 Nov; 18(46):e2204495. PubMed ID: 36148833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production.
    Shi L; Benetti D; Li F; Wei Q; Rosei F
    Small; 2022 Jun; 18(24):e2201815. PubMed ID: 35521950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PbS Quantum Dots-Decorated BiVO
    Seo JW; Ha SB; Song IC; Kim JY
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Multiple I-III-VI Quantum Dots: Preparation and Enhanced Luminescence Properties.
    Chen T; Chen Y; Li Y; Liang M; Wu W; Wang Y
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Photoelectrochemical Hydrogen Generation Based on Core Size Effect of Heterostructured Quantum Dots.
    Wang K; Tao Y; Tang Z; Xu X; Benetti D; Vidal F; Zhao H; Rosei F; Sun X
    Small; 2024 Apr; 20(16):e2306453. PubMed ID: 38032174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoration of BiVO
    Cai M; Li X; Zhao H; Liu C; You Y; Lin F; Tong X; Wang ZM
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50046-50056. PubMed ID: 34637273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating the 0D/2D Interface of Hybrid Semiconductors for Enhanced Photoelectrochemical Performances.
    Li F; Benetti D; Zhang M; Feng J; Wei Q; Rosei F
    Small Methods; 2021 Aug; 5(8):e2100109. PubMed ID: 34927862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples.
    Zhang N; Zhang L; Ruan YF; Zhao WW; Xu JJ; Chen HY
    Biosens Bioelectron; 2017 Aug; 94():207-218. PubMed ID: 28285198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.